Geosci 561: Mathematical Modeling for Geoscientists

Spring, 2009

Meeting time and location: MW 9:00-10:00 AM 8 Deike
 F 9:00-11:00 AM 337 Deike

Instructors: James Kasting Richard Alley
 443 Deike 517 Deike
 kasting@essc.psu.edu ralley@essc.psu.edu
 865-3207 863-1700

Lecture/lab schedule

Week

Jan. 12/14 Course overview; introduction to the Linux computer lab (Alley/Kasting)
 Solving simple algebraic equations on the computer
 K1--Newton’s method in 1 dimension: solving a quadratic equation

Jan. 19/21 The carbon cycle and the uptake of fossil fuel CO₂ (Kasting)
 K2--Application of Newton’s method to more complex systems:
 carbonate equilibria

Jan. 26/28 Solving simultaneous systems of algebraic equations (Kasting)
 K3--Newton’s method in N dimensions/solving matrix problems
 numerically

Feb. 2/4 CO₂ uptake in a constant alkalinity ocean (Kasting)
 K4--Application: carbonate equilibria revisited

Feb. 9/11 Ordinary differential equations (ODE’s) (Kasting)
 Stiff systems of equations
 K5--Simple implicit and explicit methods for solving ODE’S (forward
 and reverse Euler method, Crank-Nicholson method)

Feb. 16/18 Box models of the carbonate-silicate cycle (Kasting)
 K6--Application of implicit methods to a stiff, nonlinear system: the
 BLAG model

Feb. 23/25 Climate models and climate feedbacks (Kasting)
 (No new lab—continue K6)
Mar. 6/8 Introduction to PDE’s (Kasting)
 Finite differencing
 K7—A simple heat conduction problem

Mar. 9-13 **Spring break**

Mar. 16/18 Stability analysis of different numerical methods for PDE’s (Kasting)
 (No new lab—continue K7)

Mar. 23/25 Models of diffusion (Alley)
 Ficks laws applied to heat flow
 A1--Solving Laplace’s equation (steady-state heat conduction): Jacobi iteration, Gauss-Seidel iteration, and successive over-relaxation

Mar. 30/ Initial conditions and boundary conditions (Alley)
Apr. 1 **A2--Steady-state heat conduction with gradient boundary conditions and internal heat generation**

Apr. 6/8 Time-dependent heat conduction (Alley)
 A3--Nonsteady, 1-D heat conduction with sinusoidal surface T and constant T at depth/tridiagonal matrix solvers

Apr. 13/15 Groundwater flow (Alley)
 A4--Numerical solution of simple groundwater flow problems

Apr. 20/22 Groundwater flow cont. (Alley)
 (No new lab—continue A4)

Apr 27/29 TBD (Alley)

Grading: 100% based on the lab assignments
 No exams

Course philosophy: Come see us if you need help. If you put in the work, we’ll do our best to get you through the assignments.

Recommended text (if you need help with Fortran):

Introduction to FORTRAN 90 for Engineers and Scientists
Larry R. Nyhoff, Sanford Leestma

Alternatives:

Fortran 90/95 Explained, Michael Metcalf, John Reid, Malcolm Cohen
Fortran 90/95 for Scientists and Engineers, Stephen J. Chapman