Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model

By NATHAN M. URBAN1∗ and KLAUS KELLER1,2, 1Department of Geosciences, Penn State University, University Park, PA 16802, USA; 2Earth and Environmental Systems Institute, Penn State University, University Park, PA 16802, USA

(Manuscript received 9 March 2010; in final form 11 June 2010)

ABSTRACT

How has the Atlantic Meridional Overturning Circulation (AMOC) varied over the past centuries and what is the risk of an anthropogenic AMOC collapse? We report probabilistic projections of the future climate which improve on previous AMOC projection studies by (i) greatly expanding the considered observational constraints and (ii) carefully sampling the tail areas of the parameter probability distribution function (pdf). We use a Bayesian inversion to constrain a simple model of the coupled climate, carbon cycle and AMOC systems using observations to derive multicentury hindcasts and projections.

Our hindcasts show considerable skill in representing the observational constraints. We show that robust AMOC risk estimates can require carefully sampling the parameter pdfs. We find a low probability of experiencing an AMOC collapse within the 21st century for a business-as-usual emissions scenario. The probability of experiencing an AMOC collapse within two centuries is 1/10. The probability of crossing a forcing threshold and triggering a future AMOC collapse (by 2300) is approximately 1/30 in the 21st century and over 1/3 in the 22nd. Given the simplicity of the model structure and uncertainty in the forcing assumptions, our analysis should be considered a proof of concept and the quantitative conclusions subject to severe caveats.

1. Introduction

Fossil fuel consumption has driven atmospheric carbon dioxide (CO₂) concentrations far beyond the range experienced by previous civilizations. This anthropogenic perturbation of the Earth system has already committed future generations to considerable climate change, with potentially profound and irreversible effects on ecosystems and human society (Adger et al., 2007; Alley et al., 2007). Here we focus on a key example of such an anthropogenic climate change impact: a potential collapse of the Atlantic meridional overturning circulation (AMOC) (Stouffer et al., 2006). An AMOC collapse would likely have non-trivial economic impacts, for example by changes in global temperature and precipitation patterns (Keller et al., 2000; Vellinga and Wood, 2002; Keller et al., 2004; Link and Tol, 2004; Schneider et al., 2007a; Kuhlbrodt et al., 2009).

The AMOC is sensitive to anthropogenic climate forcings (Meehl et al., 2007, section 10.3.4). Current surface temperature patterns are strongly influenced by the Gulf stream and the North Atlantic current (Vellinga and Wood, 2002). These surface currents transport heat from the tropics to higher northern latitudes in the Atlantic basin. The heat loss from the surface waters to the atmosphere cools the waters and acts to increase the water density. In addition, the formation of sea ice at high latitudes acts to increase the salinity of the surface waters due to brine rejection. The decrease in temperature and the increase in salinity both increase the water densities. Surface waters that are denser than the underlying water masses sink. This deepwater formation process is an important part of a global deepwater circulation system that is often referred to as the ‘global conveyor belt’ (Broecker, 1991).

The conveyor belt circulation may collapse in response to anthropogenic climate forcings (cf. Stommel, 1961; Challenger et al., 2006; Meehl et al., 2007; Vizcaino et al., 2008). Anthropogenic greenhouse gas emissions are projected to increase surface temperatures and freshwater input from precipitation in...
the North Atlantic (Meehl et al., 2007, section 10.3.4). Both of these factors drive a decrease of the surface water densities. A decrease in the surface water density acts to decrease the density gradient between surface and deepwater and hence acts to decrease the AMOC intensity.

The AMOC may exhibit a threshold response to anthropogenic forcing due to positive feedbacks (cf. Stommel, 1961). One key positive oceanic feedback destabilizing the AMOC is driven by the net freshwater input in the North Atlantic region (Stommel, 1961; Baumgartner and Reichel, 1975). Consider, for example, an AMOC weakening due to the anthropogenic climate forcing as discussed above. This AMOC weakening results in a slowdown of the surface currents transporting waters to the deepwater formation sites, which increases the transit time of these surface waters through the region of net freshwater inputs from the atmosphere, and decreases the rate at which salt is transported poleward. The increased transit time and reduced salt transport decrease the salinity of the surface waters. The decrease in salinity decreases the water density, which further weakens the overturning through a positive feedback loop.

Oceanic observations show mixed evidence for an AMOC slowdown over the last few decades. For example, repeated transects at 26°N (Bryden et al., 2005) have been interpreted as a 30% AMOC slowdown over the last four decades. In addition, salinities in the northern North Atlantic Ocean have decreased considerably since the mid-1960s (Curry and Mauritzen, 2005). The evidence for a potential AMOC weakening is, however, not straightforward to interpret. For example, recent measurements at high temporal resolution suggest that the AMOC decrease reported by Bryden et al. (2005) may be the result of unforced internal variability, as opposed to being a response to anthropogenic forcing (Cunningham et al., 2007).

Current projections of the AMOC are deeply uncertain (Keller et al., 2007b; Meehl et al., 2007; Zickfeld et al., 2007). There is disagreement in the literature regarding the probability of such an outcome. The Intergovernmental Panel on Climate Change (IPCC) has recently stated that ‘it is very unlikely that the MOC will undergo a large abrupt transition during the 21st century’, implying a probability of less than 10% (Alley et al., 2007).

Previous studies deriving probabilistic AMOC projections have broken important new ground, but are still silent on key questions. The first, and arguably simplest, class of AMOC projections uses very simplified models (e.g. box or 2.5-dimensional models) with rather limited use of observational constraints (Knutti et al., 2003; Yohe et al., 2006). The use of low-dimensional AMOC models enables the extensive sampling of the large parameter space and to explore the tails of the associated probability density function (pdf). The disadvantage of using these simple models is that the resulting scenarios hinge critically on the assumption that the neglected feedbacks, for example through changes in the respiration of the soil carbon pool (Friedlingstein et al., 2006), are unimportant.

The second class of AMOC projections is based on Earth System Models of Intermediate Complexity (EMICs) with considerably improved representation of relevant processes and feedbacks (e.g. Challenor et al., 2006). However, studies using EMICs sample the tails of the parameter pdf rather sparsely (Challenor et al., 2006).

The third class of AMOC projections is based on high resolution coupled Atmosphere Ocean General Circulation Models (AOGCM) (e.g. Meehl et al., 2007; Schneider et al., 2007b). This approach has the advantage of being based on more realistic models, but the large computational costs of AOGCMs precludes at this time to exhaustively sample the tails of the parameter distributions. The recent IPCC report (Meehl et al., 2007) concludes, for example, that no analysed AOGCM with a reasonable AMOC hindcast shows an abrupt AMOC collapse in the 21st century for the considered forcing scenario and parameter values. Note, however, that more recent analyses may suggest that in a coupled AOGCM a high CO₂ forcing scenario can result in an AMOC collapse over a multicentury time-scale (Vizcaino et al., 2008). In addition, as shown in previous studies using simpler models, an AMOC collapse can be a low probability event and hence occur in the tails of the parameter pdf (cf. Challenor et al., 2006; Zickfeld et al., 2007) which may not be sampled by the best-guess parameter values used for the AOGCM runs analysed in Meehl et al. (2007). Finally, current AOGCMs may overestimate the stability of the AMOC due to structural errors (Hofmann and Rahmstorf, 2009).

In summary, robust probabilistic AMOC hindcasts and projections require at least two key properties: (i) they have to be based on mechanistically sound models that include the key feedbacks and (ii) they need to represent the full parametric uncertainty (including the tails of the joint pdf) given relevant observational constraints.

Ideally, one would fuse all of the available and relevant constraints into all available high resolution AOGCMs in a Bayesian model averaging sense (Draper, 1995; Hoeting et al., 1999). However, this is currently not possible due to prohibitive computational requirements. Here we take a less ambitious approach and fuse a subset of relevant observations with a simple model of the coupled carbon, climate, and AMOC system. The results from this proof-of-concept study are hence subject to several caveats (discussed below) and are not fully robust. The main limitations stem from the model simplifications and the limited, highly aggregated nature of the data used. The main advances of our study compared to previous research are the expansion of the considered observational constraints, the expanded sampling of the tails of the parameter pdf, and the correction for the effects of autocorrelated residuals.

2. Model

The past and future AMOC strength depends on an intricate interplay of radiative climate forcings (e.g. due to solar variability,
volcanic and industrial aerosols, or greenhouse gases such as carbon dioxide), the influence of changing surface air temperatures and precipitation patterns on surface fluxes of heat and freshwater, and the resulting AMOC changes. Deriving probabilistic AMOC hindcasts and projections therefore requires to couple models of (i) the carbon cycle, (ii) surface temperature and precipitation patterns and (iii) the AMOC response. These model components and their coupling are described later.

2.1. Climate module

We use the DOECLIM physical climate component of the ACC2 model, which is an energy balance model of the atmosphere coupled to a one-dimensional diffusive ocean model to calculate global temperature and ocean heat content. The model is described in great detail in Kriegler (2005) and Tanaka et al. (2007), hence we outline here only the key elements and parameters that are relevant for this study.

In this model, the land and sea surface temperatures \(T_{LS} \) and \(T_{SS} \) are determined by energy balance conditions,

\[
\dot{T}_{LS} = (a_C, q_C A + C_L) \times \left[Q_L - \lambda_L T_{LS} - \frac{k}{f_L} \left(T_{LS} - b_{SS} \frac{a_C, S}{a_C, L} T_{SS} \right) \right]
\]

\[
\dot{T}_{SS} = (a_C, b_{SS} A + c_v z_S) \times \left[Q_S - \lambda_S - \frac{k}{1 - f_L} \left(b_{SS} \frac{a_C, S}{a_C, L} T_{SS} - T_{LS} \right) - F_0 \right]
\]

Here the overdot denotes the time derivative, \(C \) and \(e \) are land/air and water heat capacities, \(Q \) are radiative forcings (at the top of the atmosphere), \(\lambda \) are climate feedback parameters, \(a_C \) are surface–troposphere couplings, \(b_{SS} \) is a marine surface air warming enhancement factor, \(k \) is a land–sea heat exchange coefficient, \(F_0 \) is the heat flux into the interior ocean, \(z_S \) is the depth of the ocean mixed layer, and \(f_L \) is the land fraction of the Earth’s surface area. The global surface air temperature is a weighted average of the land and sea surface temperatures \(T_{LS} \) and \(T_{SS} \),

\[
T = f_L T_{LS} + (1 - f_L) b_{SI} T_{SS}
\]

The equilibrium climate sensitivity to a doubling of atmospheric CO\(_2\) concentration is given by a similar weighted average of land and sea sensitivities,

\[
S = f_L S_L + (1 - f_L) b_{SI} S_S
\]

which in turn are functions of the feedback parameters \(\lambda_L \) and \(\lambda_S \),

\[
S_L = Q_{2x} \frac{kb_{SI} + (1 - f_L) f_L \lambda_S}{kb_{SI} f_L \lambda_L + (1 - f_L)(k + f_L \lambda_L) \lambda_S}
\]

\[
S_S = Q_{2x} \frac{k + (1 - f_L) f_L \lambda_S}{kb_{SI} f_L \lambda_L + (1 - f_L)(k + f_L \lambda_L) \lambda_S}
\]

where \(Q_{2x} = 3.7 \text{ W m}^{-2} \) is the radiative forcing for a doubling of atmospheric CO\(_2\), giving

\[
S = Q_{2x} \frac{kb_{SI} + (1 - f_L) f_L \lambda_S}{kb_{SI} f_L \lambda_L + (1 - f_L)(k + f_L \lambda_L) \lambda_S}
\]

The uptake of heat into the interior ocean is governed by a one-dimensional diffusion equation,

\[
T_0(z, t) = \kappa_V \frac{\partial^2}{\partial z^2} T_0(z, t)
\]

subject to the boundary conditions that \(T_0 = T_{SS} \) at the surface (\(z = 0 \)) and the heat flux into the ocean floor (\(z = z_b \)) vanishes, where \(T_0 \) is the ocean temperature as a function of depth and time and \(\kappa_V \) is the vertical diffusivity of heat. This diffusion equation has an exact solution which is approximated in DOECLIM by a series expansion.

The CO\(_2\) radiative forcing of the climate is given by the logarithmic response to increases in atmospheric CO\(_2\) as predicted by the carbon module. The other radiative forcings (e.g. non-CO\(_2\) greenhouse gases, solar irradiance, volcanism, and tropospheric aerosols) are taken from Kriegler (2005) with some adaptations described later. Following previous work (Hegerl et al., 2006) we account for the considerable uncertainty in the magnitude of the aerosol forcing feedback due to aerosol–cloud interactions, or aerosol indirect effect (Lohmann and Feichter, 2005), by applying a multiplicative scale factor \(\alpha \) to the radiative forcing. This scale factor is estimated in the assimilation step by fitting the forced model to the observed climate response.

2.2. Carbon cycle model

We couple a carbon cycle model to the climate module. Temperature changes in the climate module affect terrestrial and ocean carbon sources and sinks. In turn, these sources and sinks alter the atmospheric carbon dioxide concentration which forces the climate module. To model the carbon cycle we use a nonlinear impulse response approximation to the Hamburg AOGCM (Hooss et al., 2001), as modified by Ricciuto et al. (2008). The model structure and the calibration using oceanic, atmospheric, and ice core observations are detailed in Ricciuto et al. (2008). We hence give here just a brief overview.

The carbon cycle module considers the terrestrial as well as oceanic carbon cycles. There are four terrestrial carbon pools: leafy vegetation, living wood, detritus, and humus (soil carbon). The ocean model of carbon uptake has four layers: a mixed atmosphere/surface layer and three deeper layers. The three key parameters we alter in the carbon cycle model are the carbon fertilization parameter \(\beta \), the respiration sensitivity \(Q_{sp} \), and the thermocline transfer rate \(\eta \). The carbon fertilization parameter affects the magnitude of the atmospheric CO\(_2\) flux taken up by living plants (net primary productivity) due to the influence of CO\(_2\) concentrations on plant growth. The respiration sensitivity affects the increase in atmospheric CO\(_2\) due to temperature.
accelerated organic decay. The thermocline transfer rate governs
the rate at which dissolved carbon diffuses from the surface into
the deep ocean.

An inconsistency in the coupled model structure is that the
ocean heat diffusion parameter in the climate module \((\kappa_T) \) is inde-
pendent of the ocean carbon diffusion parameter in the carbon
module \((\eta) \). In the physical ocean, the heat uptake rate and car-
bon uptake rate are related to each other, as they both depend on
the strength of vertical mixing in the ocean. A decoupled treat-
ment of the two diffusion constants could potentially lead to
artificially high model skill during model tuning, since it is pos-

sible for the ocean heat and ocean carbon observations to be fit
with heat and carbon uptake rates which are incompatible with
each other in the real Earth system. This limitation could be ad-
dressed in a more sophisticated model, such as an EMIC, which
has a more physical representation of ocean mixing processes.

As described for example in Siegenthaler and Joos (1992),
low resolution ocean models have difficulties in reproducing
different tracer distributions with a common parametrization
of oceanic mixing. A key reason for this is that the numerical
diffusivity in these low resolution models represents a complex
mixture of processes that have different temporal and spatial
patterns for different tracers. Note that this tension between
different tracers with respect to diffusivity estimates still can
be seen in EMICs (cf. Schmittner et al., 2009). This numerical
artefact imposes considerable caveats, described later.

2.3. AMOC box model

We approximate the AMOC by a simple box model developed
by Zickfeld et al. (2004), forced with temperature change from
the climate module. The Atlantic Ocean is represented by four
well-mixed boxes: the southern, tropical, and northern surface
waters, and the deep water. The boxes are connected sequentially
so that surface currents flow from south to north by way of the
tropics, overturn, and return to the south as deep water. This
self contained cycle ignores the transport of water outside of the
Atlantic.

The AMOC model does not feed back to the DOECLIM cli-
imate module, so that regional sea surface temperature changes
arising from AMOC changes have no effect on global sur-
face temperatures. Global temperatures in turn influence further
AMOC changes solely through external forcing and not through
any internal atmosphere–ocean dynamics. These likely impor-
tant higher order interactions are perhaps best addressed in fully
coupled atmosphere–ocean circulation models (e.g. Krebs and
Timmermann, 2007).

The AMOC model also does not feed back to the NICCS car-
bon cycle model, and so does not allow AMOC changes to affect
ocean carbon uptake. A mechanistically sound representation of
the AMOC-carbon cycle feedback would require the develop-
ment of a coupled AMOC-carbon cycle model and is not consid-
ered in this analysis. Studies suggest that this feedback can have
measurable effects on atmospheric CO₂ (e.g. Sarmiento and Le
Quéré, 1996; Obata, 2007; Zickfeld et al., 2008), but arguably
the effect is small compared to the overall CO₂ forcing. For
example, Obata (2007) found that, in a AOGCM hosing exper-
iment in which the AMOC collapsed by 2150, the collapse alters
atmospheric CO₂ in 2300 by less than 50 ppm (compared to a
base concentration of 2000 ppm in 2300). In an EMIC ex-
periment, Zickfeld et al. (2008) found that an AMOC weakening
alters atmospheric CO₂ in 2500 by only 13–34 ppm, in scenarios
which achieved maximum concentrations of 1500 ppm.

The dynamics of the box temperatures \(T_i \) and salinities \(S_i \)
are governed by a simple system of coupled first-order ordinary
differential equations:

\[
\dot{T}_S = \frac{m}{V_S} (T_D - T_S) + \lambda_S (T^*_S - T_S), \quad (9)
\]

\[
\dot{T}_N = \frac{m}{V_N} (T_T - T_N) + \lambda_S (T^*_N - T_N), \quad (10)
\]

\[
\dot{T}_T = \frac{m}{V_T} (T_S - T_T) + \lambda_T (T^*_T - T_T), \quad (11)
\]

\[
T_D = \frac{m}{V_D} (T_N - T_D), \quad (12)
\]

\[
\dot{S}_S = \frac{m}{V_S} (S_D - S_S) + \frac{S_0 F_{ST}}{V_S}, \quad (13)
\]

\[
\dot{S}_N = \frac{m}{V_N} (S_T - S_N) - \frac{S_0 (F_N + F_{TN})}{V_N}, \quad (14)
\]

\[
S_T = \frac{m}{V_T} (S_S - S_T) - \frac{S_0 (F_{ST} - F_{TN} - F_T)}{V_T}, \quad (15)
\]

\[
S_D = \frac{m}{V_D} (S_N - S_D), \quad (16)
\]

where \(T^*_i \) are the temperatures to which the boxes relax, \(\lambda_i \)
are thermal coupling constants, \(V_i \) are box volumes and \(F_i \) are
external freshwater fluxes into surface boxes. \(F_N \) represents the
meltwater flux into the North Atlantic, and \(F_T \) represents the flux
out of the tropical Pacific into the North Atlantic (Latif et al.,
2000). \(F_0 \) are freshwater fluxes between surface boxes, and \(S_0 \)
is a reference salinity. The key observable parameter in this
analysis is the meridional volume transport rate (overturning)
between the southern and northern boxes, referred to henceforth
as the AMOC strength, given by

\[
m = k [\beta (S_S - S_0) - \alpha (T_N - T_S)] , \quad (17)
\]

where \(k \) is a hydraulic constant and \(\alpha \) and \(\beta \) are thermal and
haline expansion coefficients. If the model produces an AMOC
reversal, \(m \) is set to zero, representing an AMOC collapse.

The relaxation temperatures and freshwater fluxes of the sur-
face boxes are time dependent functions of the global tempera-
ture forcing \(\Delta T \), which is calculated by the climate module

\[
T^*_S = T^*_S + p_S \Delta T , \quad (18)
\]
\[T_N^* = T_N^0 + p_N \Delta T, \]
\[T_T^* = T_T^0 + p_T \Delta T, \]
\[F_N = h_N p_{NH} \Delta T, \]
\[F_T = -h_T p_T \Delta T, \]
\[F_{ST} = F_{ST0} + h_{ST} p_{SH} \Delta T, \]
\[F_{TN} = F_{TN0} + h_{TN} p_{NH} \Delta T, \]

where the \(T_N^0 \) are unforced relaxation temperatures, the \(p_i \) are linear pattern scaling coefficients to estimate regional Atlantic and hemispherical temperatures from global temperatures, and the \(h_i \) parametrize the hydrological sensitivities to warming.

One key uncertain parameter affecting the AMOC response to anthropogenic climate forcing is the North Atlantic hydrological sensitivity, \(h = h_N \), which gives the change in freshwater flux into the northern box for a given change in surface air temperature. A high sensitivity implies a greater AMOC sensitivity to anthropogenic forcing (Zickfeld et al., 2004).

3. Data

3.1. Forcings

The forcings in the hindcast calibration period span the years 1850–2009. We consider CO\(_2\) emissions (1850–2006) from (i) fossil fuel burning, cement manufacture, and gas flaring (taken from Boden et al., 2009) and (ii) land-use changes (1850–2000) from Jain and Yang (2005), based on the land-use estimate of Ramankutty and Foley (1999). The anthropogenic emissions are extended to 2009 by linear extrapolation of the 1997–2006 trend. The land use emissions 2001–2009 are held constant at 2000 values.

Because the DOECLIM forcings have not been updated past the year 2000, we extend them to 2009 using a combination of updated data sets and historical extrapolation. Solar forcing is updated through 2009 using the PMOD composite total solar irradiance data set (Fröhlich and Lean, 1998). Sulphate aerosol forcing is updated to 2005 using version 2.7 of the Pacific Northwest Laboratory annual inventory of historical SO\(_2\) emissions (S. Smith et al., 2009, in preparation, personal communication) and converted to radiative forcing by the procedure described in Krigler, 2005; 2006–2009 SO\(_2\) emissions are held constant at 2005 values. Volcanic forcing is assumed zero after 2000. Non-CO\(_2\) greenhouse gases are extended to 2009 by linear extrapolation of the 1991–2000 trend.

For projections beyond the year 2009, future forcings from fossil CO\(_2\) emissions, from non-CO\(_2\) greenhouse gas, and anthropogenic aerosols are adopted from Nordhaus (2007) following a business-as-usual (BAU) emissions scenario, yielding cumulative fossil fuel emissions of about 4800 GtC from 2000 to 2300. The CO\(_2\) emissions are plotted in Fig. 1. Land-use CO\(_2\) emissions decay linearly from 2009 levels to zero in 2100 and are zero thereafter. Volcanic forcings are assumed zero and solar forcings are held constant at the average for solar cycle 22 (1986–1996). The AMOC model is forced with the hindcast and projected temperatures.

3.2. Observational constraints

We use six different observational data sets to calibrate the model: (i) atmospheric CO\(_2\) concentrations from Mauna Loa (Keeling and Whorf, 2005), (ii) CO\(_2\) concentrations from the Law Dome ice core (Etheridge et al., 1996), (iii) estimates of the anthropogenic carbon fluxes into the oceans based on chlorofluorocarbon measurements (McNeil et al., 2003), (iv) a synthesis data set of combined land and marine global temperatures (Brohan et al., 2006), (v) estimates of oceanic heat uptake (Gouretski and Koltermann, 2007) and (vi) AMOC strength estimates by Bryden et al. (2005) and Cunningham et al. (2007), with error estimates derived from Kanzow et al. (2007) and Lumpkin and Speer (2007).

4. Inversion method

We use a Bayesian inversion technique based on a Markov chain Monte Carlo (MCMC) algorithm (Metropolis et al., 1953; Hastings, 1970) to estimate model parameters from the observational data over a hindcast calibration period of 1850–2009.

If the observational data are denoted \(y \) and the unknown parameters \(\Theta \), the Bayesian posterior probability of the model parameters, conditional on the observed data, is given by Bayes’s
\[p(\Theta | y) \propto p(y | \Theta) \times p(\Theta). \] (25)

Here \(p(y | \Theta) \) is the likelihood of the data given the parameters, and \(p(\Theta) \) is the prior probability distribution of the parameters. After specifying the likelihood function and priors, a Markov chain of random samples are drawn from the joint posterior (eq. 25) by MCMC. The marginal probability distribution for each parameter is a kernel density estimate constructed from the parameter’s Markov chain.

Let \(y = \{ y_i \} (i = 1 \ldots N) \) be one of the individual observation time series (e.g. temperature), and \(\mu = \{ f(i; \theta) \} \) be the model output for that data type, where the function \(f(\cdot) \) is the model, \(t \) is time and \(\theta \) are the unknown model parameters. Each observational time series is assumed to be drawn from a stationary normal AR(1) first-order autoregressive process, centred on the model output, \(y \sim AR(\mu, \sigma^2, \rho) \), where \(\sigma^2 \) is the AR(1) innovation variance and \(\rho \) is the lag-1 (annual) autoregression coefficient. Defining the data-model residuals as \(r_i = y_i - f(i; \theta) \), the autocorrelation can be removed to produce ‘whitened’ residuals which are i.i.d. normal (white noise), \(w_i = r_i - \rho r_{i-1}(i > 1) \). Defining the stationary process variance as \(\sigma^2 = \sigma^2/(1 - \rho^2) \), the full AR(1) likelihood function can be expressed in terms of the whitened residuals as given in Bence (1995) (in slightly different notation)

\[
p(y | \theta, \sigma, \rho) = \left(2\pi\sigma^2\right)^{-N/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=2}^{N} w_i^2 \right).
\] (26)

Here the uncertain parameters \(\Theta = \{ \theta, \sigma, \rho \} \) include both the unknown model parameters \(\theta \) and the unknown statistical parameters \(\sigma \) and \(\rho \).

The residual errors in each of the time series are assumed to be independent of the residuals in the other time series, so the overall likelihood of all the data is the product of independent likelihood factors for each data set, each of the form given in eq. (26). This is a simplifying assumption, but exploratory analysis does not indicate strong correlation between the residuals of different observational time series.

By using an AR(1) likelihood, the assimilation method accounts for potential autocorrelation in the residuals as well as the uncertainty in the autoregressed process parameters. This autoregressive process is intended to encompass the combined model structural error, natural variability, and measurement error and is estimated statistically from the data-model residuals. Specifically, the \(\text{CO}_2 \) time series from Mauna Loa and the Law Dome as well as the global mean surface temperature anomalies and the oceanic heat uptake are taken to be of unknown variance and autocorrelation. For the AMOC time series, we adopt the published variance estimates (Bryden et al., 2005; Kanzow et al., 2007; Lumpkin and Speer, 2007) and neglect potential autocorrelation (fixing \(\rho = 0 \) and \(\sigma \) constant for that time series). Due to their sparsity, the ocean carbon flux data points are also assumed to be independent (and identically distributed) with normal observational errors adopted from McNeil et al. (2003).

The estimated parameters are model parameters, AR(1) statistical parameters, and the initial values in the temperature, ocean heat, \(\text{CO}_2 \) and AMOC time series. The parameters with their prior ranges are detailed in Table 1. We assume a priori that all the parameters are independent of each other so the joint prior \(p(\Theta) \) for all the parameters factorizes into a product of independent priors for each parameter. This prior assumption does not preclude the possibility of posterior correlations between parameters after they have been estimated (see Section 5.2). All parameter priors are truncated uniform distributions except for climate sensitivity, which is given a diffuse truncated Cauchy(3,2) prior intended to approximate the information contained in palaeo constraints that are neglected in our analysis (e.g. Annan et al., 2005; Schneider von Deimling et al., 2006; Annan and Hargreaves, 2009).

The calibrated parameters found in the inversion are used to probabilistically project future climate observables. The hindcasts and projections are samples from the posterior predictive distribution, with the observational/process noise superimposed. The temperature, ocean heat and \(\text{CO}_2 \) errors and autocorrelations are estimated as above, with the \(\text{CO}_2 \) error assumed the same as the instrumental time series. The AMOC error is assumed to be \(\pm 6 \text{ Sv} \) (1\(\sigma \)) in hindcasts (1850–2009) following Bryden et al. (2005), and 2 Sv in projections (after 2009) following Cunningham et al. (2007).

Table 1. Estimated model and data distributional parameters, and their prior ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration sensitivity</td>
<td>(Q_{20})</td>
<td>–</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>Carbon fertilization factor</td>
<td>(\beta)</td>
<td>–</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Thermocline transfer rate</td>
<td>(\eta)</td>
<td>m yr(^{-1})</td>
<td>0.5</td>
<td>200</td>
</tr>
<tr>
<td>Vertical diffusivity</td>
<td>(\kappa _V)</td>
<td>cm(^2) s(^{-1})</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td>Climate sensitivity</td>
<td>(S)</td>
<td>K</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>Aerosol scaling</td>
<td>(\alpha)</td>
<td>–</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Hydrological sensitivity</td>
<td>(h)</td>
<td>Sv K(^{-1})</td>
<td>0</td>
<td>0.06</td>
</tr>
<tr>
<td>Init. temperature</td>
<td>(T_0)</td>
<td>K</td>
<td>–0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Init. ocean heat</td>
<td>(H_0)</td>
<td>10(^{22}) J</td>
<td>–50</td>
<td>0</td>
</tr>
<tr>
<td>Init. (\text{CO}_2)</td>
<td>(\text{CO}_2)</td>
<td>ppm</td>
<td>275</td>
<td>295</td>
</tr>
<tr>
<td>Init. AMOC strength</td>
<td>(m_0)</td>
<td>Sv</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Autocorr. (T)</td>
<td>(\rho_T)</td>
<td>–</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>Autocorr. ((\text{CO}_2), inst.)</td>
<td>(\rho_{\text{CO}_2,\text{inst}})</td>
<td>–</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>Autocorr. (ocean heat)</td>
<td>(\rho_H)</td>
<td>–</td>
<td>0</td>
<td>0.99</td>
</tr>
<tr>
<td>3D (T)</td>
<td>(\sigma_T)</td>
<td>K</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>3D ((\text{CO}_2), ice)</td>
<td>(\sigma_{\text{CO}_2,\text{ice}})</td>
<td>ppm</td>
<td>0.2</td>
<td>20</td>
</tr>
<tr>
<td>3D ((\text{CO}_2), inst.)</td>
<td>(\sigma_{\text{CO}_2,\text{inst}})</td>
<td>ppm</td>
<td>0.2</td>
<td>7</td>
</tr>
<tr>
<td>3D (ocean heat)</td>
<td>(\sigma_H)</td>
<td>10(^{22}) J</td>
<td>0.1</td>
<td>10</td>
</tr>
</tbody>
</table>
5. Results and discussion

5.1. Hindcasts

The hindcasts of mean surface temperatures, oceanic heat anomalies, atmospheric CO$_2$ concentrations, and AMOC strength show considerable skill. For example, the observed surface temperature cooling after the Agung and Pinatubo volcanic eruptions (in 1963 and 1991, respectively) are reasonably well reproduced in the hindcasts (Fig. 2). There is a slight suggestion that a similar pattern is seen in the oceanic heat anomaly, but this signal is relatively small compared to the data uncertainties and the magnitude of the data-model residuals.

The anthropogenic trend in atmospheric CO$_2$ concentrations is large compared to the observation uncertainties, resulting in a high signal-to-noise ratio. The relatively large signal-to-noise
ratio in the CO$_2$ hindcasts allows relatively well-constrained carbon cycle parameter estimates (discussed below) and thereby relatively tightly constrained CO$_2$ projections. The signal-to-noise ratio decreases roughly from the CO$_2$ observations to the observations of surface temperature, oceanic heat anomaly, and the AMOC intensity.

Although the two decadal ocean carbon flux data points are not highly informative, they are also hindcast well by the calibrated model at its posterior mode. No strong volcanic response is seen in the best fit ocean carbon uptake, but volcanic responses are visible in the upper 95% credible interval, presumably in the parametric tails that give a stronger carbon cycle response to temperature changes.

The calibrated model hindcasts little forced change in AMOC strength, consistent with the interpretation of Cunningham et al. (2007) that the declines in AMOC strength observed by Bryden et al. (2005) may be ascribed to natural variability and observation error.

5.2. Parameter estimates

Parameter estimates associated with the high signal-to-noise ratio are considerably sharpened compared to their prior estimates (Fig. 3). This is the case, for example, for the CO$_2$ fertilization factor and the climate sensitivity. In contrast, the estimate for the hydrological sensitivity is much less constrained by the observations. The considered AMOC observations have very little power to sharpen the prior estimate of the hydrological sensitivity, consistent with the findings of Keller and McInerney (2008). Our AMOC projections are therefore sensitive to prior assumptions about this parameter and deeply uncertain (Lempert, 2002; Keller et al., 2007b). Both the low and high ends of the prior range of hydrological sensitivity (0 and 0.06 Sv/K) are close to the predictions of different coupled models (Zickfeld et al., 2004), so this full range of prior uncertainty should be propagated through to the model projections even if data cannot constrain it further.

![Fig. 3. Marginal probability density functions of the estimated parameters. The horizontal axis range represents the lower and upper bounds of the prior probability density function. The dashed curve in the climate sensitivity plot is the non-uniform prior distribution. All other parameter priors are bounded uniform and not depicted.](image-url)
The estimated climate sensitivity is on the low end of recent estimates (Meehl et al., 2007, table 8.2, fig. 9.20). This is in part a consequence of the low value of the aerosol forcing scaling factor $\alpha \approx 0.6$ required for the total forcing to reproduce the observed temperature and ocean heat time series (Fig. 3). The observed warming can be explained by a low climate sensitivity and a small aerosol cooling effect. In contrast, higher climate sensitivities are compatible with a strong aerosol cooling effect counteracting some of the warming (cf. Forest et al., 2002). A low climate sensitivity in turn implies less projected warming and AMOC weakening.

Some of the parameter estimates show strong correlations (Fig. 4). For example, estimates of the ocean thermocline exchange rate for CO$_2$ and the CO$_2$ fertilization factor are negatively correlated (Fig. 4, row 2, column 2). This finding is similar to the findings of Ricciuto et al. (2008) and is expected because an increased thermocline exchange rate (stronger ocean carbon sink) requires a decreased CO$_2$ fertilization factor (weaker terrestrial carbon sink) to result in the same atmospheric CO$_2$ observations. A second example is the positive correlation between the climate sensitivity and the aerosol scaling factor (Fig. 4, row 5, column 5). As discussed above, this positive correlation is expected because a higher climate sensitivity can be counteracted by a stronger (negative) climate forcing from aerosols.

A third example of parameter correlation is between the climate sensitivity and the vertical diffusivity of heat in the ocean (Fig. 4, row 4, column 4). This correlation is expected to be positive when observing surface temperatures, and negative when observing ocean heat content (Urban and Keller, 2009). In Fig. 4 this correlation may appear weak. In fact, the correlation between S and κ_V is moderately positive (about 0.4). The positive correlation implies that temperature provides a relatively stronger constraint on climate sensitivity than does ocean heat, consistent with the signal-to-noise ratios present in those observations (see Section 5.1). Further evidence to support this hypothesis is found in the marginal posterior pdf for κ_V in Fig. 3, which is broad, indicating that the ocean heat data do not strongly
constrain the diffusivity. This may be related to the highly autocorrelated ocean heat residuals (Fig. 3, panel ρ_H), as higher autocorrelations imply fewer effective degrees of freedom in the data.

As discussed in Section 2.2, the decoupled treatment of ocean heat and carbon diffusion in the model can lead to inconsistency between these parameters which would not exist in a model that treats both processes using the same parametrization of vertical mixing. The estimates for the heat diffusion (κ_V) and carbon diffusion (η) constants in Fig. 3 may lend support to the presence of such inconsistency, as the assimilation simultaneously implies a higher rate of ocean heat uptake but a lower rate of ocean carbon uptake. However, this interpretation is sensitive to the choice of prior range for these parameters, and the relationship between the values of parameter. (For example, an upper limit of $\eta = 200 \text{ m yr}^{-1}$ may not imply the same amount of vertical mixing as an upper limit of $K_V = 4 \text{ cm}^2\text{s}^{-1}$.) Another line of evidence comes from Fig. 4, which shows the inferred κ_V and η to be uncorrelated with each other. One might expect them to be correlated if they arise from the same underlying mixing processes, assuming that the highly aggregated observations are sufficiently informative to detect this correlation. However, it is difficult to evaluate the expected amount of correlation between the two diffusion parameters in this model, considering that both are ‘effective’ parameters which attempt to encode a variety of non-diffusive mixing and biogeochemical processes, and hence are difficult to interpret.

5.3. Projections

The atmospheric CO$_2$ concentrations and the mean surface air temperatures are projected to increase, with a considerable widening of the projection confidence bounds (Fig. 5). The temperature projections are relative to 1850, and are low compared to recent IPCC projections (Meehl et al., 2007, section 10.3) due to the low central estimate of climate sensitivity found in our study. We find a 1.5 K mean warming over the 21st century in our BAU emissions scenario, similar to the warming projected by the IPCC in the B2 emissions scenario. However, the forcing scenario which most closely approximates our 2100 CO$_2$ concentration projections (Fig. 5a) is the A1B scenario, with approximately 2.5 K of warming projected by the IPCC over the 21st century.

The AMOC intensity is projected to decrease gradually over time, with a sizeable probability of an AMOC collapse (defined here as an AMOC intensity of zero) within the considered time horizon. The AMOC strength decreases by an average of 17% from 2000 to 2100. This reduction is consistent with but slightly lower than the projections of the coupled climate models compared in Schneider et al. (2007b), and smaller than the results of Knutti et al. (2003), which show AMOC reductions of approximately 25 and 60%, respectively over the same time horizon. (The 2200 projections for AMOC strength include some negative values, not shown in the graph. This is due to the addition of observational noise, as the model itself does not produce AMOC reversals.)

![Fig. 5](image-url) Probabilistic projections of (a) atmospheric CO$_2$ concentrations, (b) global mean surface temperature anomalies, and (c) AMOC strength in 2010 (solid), 2100 (dashed) and 2200 (dash-dotted).
An AMOC collapse has been interpreted as a low-probability event (Wood et al., 2003; Rahmstorf and Zickfeld, 2005; Alley et al., 2007). The model projections suggest that an AMOC collapse in the 21st century is very unlikely (i.e. a probability of less than 10% Fig. 6, dashed curve), consistent with the recent IPCC assessment (Alley et al., 2007). (The AMOC is defined to be collapsed if the modeled AMOC strength is zero.) The projected probability of an AMOC collapse increases gradually and almost linearly after 2150 to reach 10% in the next two centuries, and over 35% by 2300.

Although the probability of experiencing an AMOC collapse in the 21st century is small according to our analysis, the probability of committing to a future collapse within the next century can be higher. To test this, we explore several alternate forcing scenarios in which the BAU emissions trajectory is followed to a given year, after which the CO₂ emissions are abruptly reduced to zero and remain zero thereafter. An AMOC collapse is ‘triggered’ by that year if the AMOC later collapses before 2300. A future collapse is possible in a zero-emissions scenario because, although there are no further CO₂ emissions, atmospheric greenhouse gas concentrations and climatic forcing of the AMOC remain high until natural carbon sinks can remove CO₂ from the atmosphere. Our analysis indicates that if emissions are reduced to zero after 2100, there remains a 4% chance that the AMOC will collapse by 2300 (Fig. 6, solid curve), or 18% if emissions are halted in 2150. If CO₂ emissions stop in 2200, the probability of committing to an AMOC collapse rises to 30%.

6. Caveats

The results of this proof-of-concept study hinge on a large number of assumptions that impose severe caveats on the forthcoming conclusions and point to potential future improvements. Relevant examples for such potential improvements include: (i) using a more refined Earth system model, (ii) considering information contained in the spatial structure of the observational constraints, (iii) representing the uncertainty in the CO₂ emissions scenarios and (iv) adding palaeo-proxies to the analysed data set. These future research areas are briefly discussed below.

First, the adopted model is extremely simple, does not fully couple the climate, carbon cycle and AMOC components, and misses likely important feedbacks such as changes in the nitrogen cycle (Houghton et al., 1998) or the Greenland ice sheet dynamics (Zwally et al., 2002). Increasing the model complexity is a logical step to reduce this problem (e.g. Challenor et al., 2006), but many of these potentially relevant feedbacks are still poorly resolved in Earth system models. Our study is also silent on the relative contributions of the climate parameter uncertainty versus the carbon cycle parameter uncertainty to the total uncertainty in the AMOC projections. Second, our analysis considers only globally aggregate information (e.g. the global average surface temperature). This approach reduces the computational burden considerably, but it neglects potentially useful information contained in the spatial signal structure. For example, the pattern of oceanic heat and other tracer anomalies may provide useful constraints on the ocean diffusivity (Cessi et al., 2006; Schmittner et al., 2009). Third, this study considers a single CO₂ emissions scenario to isolate the effects of key uncertainties in the carbon, climate, and AMOC system from the uncertainties in the socioeconomic system. The projections are strongly contingent on the adopted business-as-usual CO₂ emissions scenario, and are hence silent on the effects of potential cuts in CO₂ emissions due to climate policies, as well as on the uncertainty in the future BAU emissions trajectory. Using probabilistic CO₂ emissions scenarios (Webster et al., 2002; Keller et al., 2007a) would likely change the estimated probabilities of a future AMOC collapse. Fourth, this study uses century-scale observations that are mostly derived from the instrumental record. Adding palaeo-observations such as reconstructed temperatures over a millennium time-scale may provide important additional constraints (Crowley, 2000; Hegerl et al., 2006). Last, but not least, the projections are quite sensitive to forcing assumptions in the historical calibration period, such as reconstructions of atmospheric SO₂ concentrations and the strength of the aerosol indirect effect.

Estimates of the probability of ‘tail-area events’ (such as an AMOC collapse in this analysis) are at this time often deeply
uncertain, that is, they can hinge on subjective assumptions about factors such as model structures and parameter priors (Schneider et al., 2007b; Keller and McInerney, 2008). Quantifying the effects of this deep uncertainty on the future projections is an area of active research (cf. Tomassini et al., 2007) and a key avenue to potentially improve climate change decision-making (cf. Ellsberg, 1961; Lempert, 2002).

7. Conclusions

We develop a simple and computationally efficient model of the coupled climate, carbon, and AMOC systems. We demonstrate the feasibility to calibrate this model using a Bayesian inversion technique to derive probabilistic hindcasts and projections that carefully sample the tail areas of the parameter pdf. The probability of an AMOC collapse in the 21st century under a business-as-usual CO$_2$ emissions scenario is less than one in ten in our simple model. This estimate is consistent with the recent IPCC assessment (Alley et al., 2007). However, the projected probability of an AMOC collapse increases beyond this century and exceeds one in over the next three centuries. Although the probability of experiencing an AMOC collapse in the 21st century is small, the probability of crossing a forcing threshold and committing to a future collapse may be as high as one in 20 during this century and over one in three during the next.

8. Acknowledgments

We thank Kirsten Zickfeld and Elmar Kriegler for providing the source codes of the DOECLIM and the AMOC box models and for many insightful discussions, Brian Tuttle for assistance with model development, and James Annan and anonymous reviewers for comments and suggestions. Funding for this project was provided by the U.S. Environmental Protection Agency under Purchase Order EP07H000339 and by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this material, and remaining errors, are those of the authors alone.

References

Tellus **62A** (2010), 5

