
-1- 

1. INTRODUCTION 

Recent years have seen an explosion of interest in new tools and methods for 

helping decision makers identify and evaluate robust, as opposed to optimal, decisions.  

As discussed in more detail below, many definitions of robustness exist, but most 

capture the idea of satisficing over many plausible future states of the world.  Methods 

for identifying and evaluating robust strategies range from formal analytic approaches 

such as robust optimization (Ben-Tal et al. 2009) to qualitative scenario (Alcamo 2008) 

and other heuristic methods (Rosenhead 1990).  Several factors may contribute to this 

interest in robust strategies, including increased recognition of the fallibility of many 

forecasts, sensitivity to the importance of unanticipated events (Taleb 2007), and the 

need for decision support processes that can engage stakeholders with significantly 

different expectations about the future (NRC 2009).  

To date, however, there exist few formal or applied comparisons among the many 

types of robust decision methods. Such comparisons are complicated because these 

methods often use different definitions of robustness, use different descriptions of 

uncertainty, and provide different information to decision makers at different stages of 

the decision process.  But this wide diversity of approaches also enhances the 

importance of systematic comparisons that could assist decision makers and analysts in 

choosing among and employing these approaches more effectively. 

This paper begins to address these issues by applying two robust decision 

approaches to the same stylized decision challenge and systematically comparing their 

methods and results.  This comparison aims to improve understanding of the two 

methods and also suggests a template for the type of comparative study that might help 
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bring structure to the emerging field of robust decision methods. 

This study compares Info-gap originally developed by Ben-Haim (2001) and 

RDM (robust decision making) developed by Lempert, Popper, and Bankes (2003). The 

two offer an interesting comparison because both provide quantitative decision analytic 

frameworks designed to evaluate robust strategies using imprecise and potentially 

contentious information and because both have been used to inform high-level policy 

processes. For instance, Info-gap has supported flood risk management decisions in the 

UK (Hine and Hall 2010) and management of invasive species (Denys et al. 2009). 

RDM has been used to develop long-range water management plans in the American 

west (Groves et al. 2008a; Lempert and Groves 2010), in an energy policy study 

(Popper 2009) briefed at the ministerial level to the Israeli government, and in a study 

of the U.S. Terrorism Risk Insurance Act (TRIA) (Dixon et al. 2007) whose results 

were quoted in debate on the floor of the U.S. Senate.  

Both methods have important similarities and differences.  Info-gap characterizes 

uncertainty with nested sets of plausible futures and defines robustness as the range of 

uncertainty over which a strategy achieves a prescribed level of performance.  RDM 

characterizes uncertainty with sets of plausible futures explicitly chosen to inform the 

choice among alternative strategies.  RDM uses several definitions of robustness, 

including: 1) trading some optimal performance for less sensitivity to broken 

assumptions and 2) performing relatively well compared to the alternatives over a wide 

range of plausible futures.  Neither Info-gap nor RDM provide a strict ranking of 
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alternative decisions.  Rather, both provide decision support,1 summarizing tradeoffs 

for decision makers to help inform their judgments about the robustness of alternative 

decision options.  RDM also identifies scenarios that describe for decision makers 

vulnerabilities of proposed strategies. 

As its test case, this study evaluates emission reduction paths for greenhouse gas 

(GHG) emissions in the face of adverse and potentially abrupt changes in the climate 

system. Many climate-related decisions clearly face conditions of significant 

uncertainty and recent reports have recommended using robustness criterion to evaluate 

alternative strategies (Morgan et al. 2009). The potential for abrupt changes, 

highlighted by (Alley et al. 2002; Keller et al. 2004; Schneider et al. 2007; Keller et al. 

2008; Lenton et al. 2008) among others, increases the salience of robust strategies by 

injecting considerations of poorly characterized yet consequential uncertainties into 

decisions about greenhouse gas reductions. 

This study applies both Info-gap and RDM to this test case, using the same 

models and data, and then compares and contrasts the results. This comparison will be 

structured similarly to Lempert and Collins (2007), which used a simple ecological 

simulation with abrupt threshold dynamics to compare several decision frameworks: 

traditional expected utility optimization, the precautionary principle, and three 

definitions of robustness within the RDM approach. Two findings of this earlier work 

are relevant here.  First, it finds that robust strategies may be preferable to optimum 

strategies when two conditions are met: the uncertainty is sufficiently “deep” or 

                                                
1 Decision support represents a set of processes intended to create the conditions for the 

production and appropriate use of decision-relevant information (NRC 2009). 
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“severe”2 and the set of alternative decision options is sufficiently large.  Second, the 

three definitions of robustness compared — (i) trading some optimal performance for 

less sensitivity to assumptions, (ii) satisficing over a wide range of futures, and (iii) 

keeping options open—are found to identify similar strategies as the most robust 

choice.  

The next section of this study will describe the decision problem and introduce 

the simulation model used to address it.  The third section will describe and apply Info-

gap.  The fourth section will similarly describe and apply RDM.  The last section will 

discuss what we have learned about these two methods and, more broadly, about robust 

analysis. 

2. Evaluating GHG Reduction Paths in the DICE 07 Model 

The Dynamic Integrated model of Climate and Economy (DICE) (Nordhaus 

2008) provides a widely used platform for studying the efficacy of alternative reduction 

paths for GHG emissions. DICE calculates GHG abatement schedules that aim to yield 

the optimal balance between the uncertain economic costs of abatement and the 

uncertain impacts of climate change. For this study, we use a modified version of 

DICE07 (McInerney, Lempert, and Keller (2009), henceforth “MLK”), that adds the 

possibility of a large-scale and economically costly collapse of the North Atlantic 

Meridional Overturning Circulation (MOC) triggered if and when atmospheric CO2 

levels exceed an uncertain threshold (Keller et al. 2004). The model’s emission 

reduction paths also incorporate future “learning” -- in 2075 the model’s optimization 

                                                
2 The Info-gap and RDM literatures use the phrases severe and deep uncertainty, 

respectively.  We define these terms below and will use both in this paper. 
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routine is provided some information about the likelihood of MOC collapse.  

Following MLK, we focus on four DICE model input parameters that capture key 

climate, technology, and economic uncertainties. As shown in Table 1, these are: 

(1) λ*, the climate sensitivity, describing the equilibrium increase in mean 

near-surface air temperatures associated with a doubling of 

atmospheric CO2 concentrations. 

(2) gσ(2005), the initial growth rate of carbon intensity, describing the rate 

at which the amount of carbon emitted per unit of economic output is 

decreasing at the model outset in 2005. MLK uses this parameter to 

represent the uncertainty related to the cost of reducing GHG’s. 

(3) θ3, the economic damages associated with MOC collapse, expressed as 

a proportion of global economic output, that start to occur immediately 

in the period of collapse.  

(4) MOC Vulnerable, a binary parameter indicating whether or not the 

MOC will actually collapse if the critical CO2 concentration threshold 

is exceeded. The threshold depends on the climate sensitivity (Stocker 

and Schmittner 1997; Keller et al. 2004).  

MLK estimated probability distributions for each of these four uncertain 

parameters, derived from the literature and the authors’ own best estimates.  These 

distributions were used to identify 11 equally likely intervals for λ*, gσ(2005), and θ3, 

which, in combination with the two possible values for MOC Vulnerable, were used to 

generate a full factorial experimental design of 113 x 2 = 2662 cases. MLK used this set 

of 2662 possible states of the world to calculate the expected utility-maximizing 
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emissions abatement path, also referred to as the “Expected Utility Maximization” 

(EUM) solution. As shown in Figure 1, EUM, which includes learning, reduces 

greenhouse gas emissions in the year 2065 roughly 30% below “Business as Usual” 

(BAU), which includes no emission reduction. 

MLK also considered two other emission reduction paths, each also with learning. 

“Safety First” (SF) maximizes expected utility subject to the constraint that the 

expected value of the lowest 1% of cases remains at some chosen level. “Limited 

Degree of Confidence” (LDC) maximizes a weighted average of expected utility and 

the utility of the lowest 1% of cases. For this study, we use a parameterization of SF 

representing moderate caution (W* = 55; constraining the lowest 1% of cases to be 

55% between the minimum and maximum BAU utility) and a parameterization of LDC 

representing extreme risk-aversion (W*  = 0; expected utility is ignored and only the 

average utility of the lowest 1% of cases is maximized). The full set of strategies – 

BAU, EUM, SF, and LDC – offer a wide range of choices whose robustness can be 

evaluated by the Info-gap and RDM approaches.  

These calculations provide a database with 2662 entries for each strategy, where 

each entry represents the utility of that strategy in one of the 2662 possible future states 

of the world characterized by one combination of model parameter values. The left side 

of Figure 2 shows the distribution of utilities for the four strategies, using the standard 

units for Ramsey models of intertemporal choice. BAU has high utility in the highest 

number of states of the world, but spans the widest range. The difference between 

BAU’s highest and lowest utility is 14,000, corresponding to a loss due to climate 

impacts of about a third or more of global economic product. In contrast, LDC has the 
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fewest states with high utility but the shortest low-utility tail.  The figure also shows the 

expected utility for each decision criteria (solid lines) and the average value of the 

lowest 5 percent of utilities (dashed lines) contingent on the likelihood estimates from 

MLK. As expected, EUM has the highest expected utility, and LDC has the highest 

value for its lowest-utility outcomes.   

The results show, not surprisingly, that EUM indeed maximizes the expected 

value of the utility.  But given the deep/severe uncertainty surrounding any 

specification of the likelihoods for the four DICE07 parameters, decision makers might 

reasonable question which strategy is most robust.  Info-gap and RDM are both 

designed to address this question. In the following we apply each method to the 

database of cases shown in Figure 2 and then compare the results. 

3. APPLICATION OF INFO-GAP 

Info-gap theory has its origins in Ben-Haim’s (1996) study of the reliability of 

mechanical systems. Insights into the sensitivity of these systems to severe uncertainty 

proved to be transferable to a broader class of problems. Info-gap has been cultivated 

into a general method for evaluating robust decisions under conditions of severe 

uncertainty, which Ben-Haim defines as conditions where the evidence upon which to 

base a decision is scarce and only of limited relevance to predicting what may happen 

in the future. Such uncertainty leads to an information gap – a disparity between what is 

known and what needs to be known in order to make a dependable decision. An Info-

gap analysis employs three elements: a non-probabilistic, quantified model of 

uncertainty; a system model that projects the outcome of decisions contingent on the 

model of uncertainty; and a set of performance requirements that specify the value of 
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the outcomes the decision makers require or aspire to achieve.  

3.1 Description of the Method 

As shown in Figure 3, Info-gap begins by constructing a representation of the 

severe uncertainty, which it then uses to estimate the consequences of alternative 

decisions provided exogenously to the analysis.  The approach informs decision makers 

by providing them tradeoff curves that compare these strategies according to two 

criteria it calls “robustness” and “opportuneness.” We now discuss in detail Info-gap’s 

representation of uncertainty, its decision criteria, and the information it provides. 

Description of Severe Uncertainty: Info-gap represents uncertainty with a family 

of nested sets defined on the space of a decision-relevant variable or variables . The 

best estimate of this uncertain quantity  (which can be a scalar or vector) is written .  

Info-gap assumes that  represents a poor guess at the true values of the parameters, 

and models the degree of uncertainty regarding this central estimate as a set of 

expanding nested sets in the parameter space.  A larger set of possible values of u 

represents increased uncertainty. The size of the possible departure of the best estimate 

 from reality – in other words, the horizon of uncertainty – is parameterized by 

. The info-gap uncertainty model is therefore written as a nested family of sets 

. 

The simplest Info-gap uncertainty models employ intervals surrounding each 

uncertain variable. The size of the interval is scaled by α. The approach can easily 

incorporate additional information about the uncertain quantities, or constraints on their 

values.  For instance, when no information exists about any dependence among 

variables, the Info-gap uncertainty model assumes a cuboid shape.  Any dependence 
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relationship among parameters may be represented by excluding less plausible 

combinations of events, resulting in sets with more elliptical shapes.  

Robustness Criteria: Info-gap defines robustness as the maximum uncertainty, 

measured by the parameter , over which a strategy achieves a certain level of 

performance. The method evaluates alternative strategies  with a reward function 

 that measures the desirability of each option to the decision maker for a given 

point in . The analysis employs its uncertainty model to calculate the reward 

 of decision options  at different horizons of uncertainty . At a given horizon 

 there will be a range of possible rewards given by the minimum and maximum levels 

of  . These levels, which collapse to a singular value  at , are used 

to define two criteria: 

(1) “Robustness,” the minimum reward for each decision option  at a 

given level of uncertainty . 

(2) “Opportuneness,” the maximum reward for each decision option  at 

a given level of uncertainty .  

Info-gap combines these two criteria with the concept of robust-satisficing to 

evaluate the tradeoffs among alternative strategies. Robust-satisficing seeks to identify 

acts that perform acceptably well under a wide range of conditions. The decision maker 

expresses an acceptable level of reward denoted by . The robustness function, , 

measures the maximum uncertainty which can be borne while ensuring : 

                                (1) 

Only at  can the nominal level of reward  be guaranteed. For any 
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value of  it is trivially true that . Robustness 

decreases as the requirement for reward becomes increasingly demanding.  

The robustness function reflects the pernicious effects of uncertainty. However, 

uncertainty can also yield unexpectedly good reward. The opportunity function, 

, which measures the minimum level of uncertainty required to enable a 

‘windfall’ level of reward, : 

                                 (2) 

If the horizon of uncertainty is as large as , then reward as large as   is 

possible, but only in the best case. The robustness function expresses immunity against 

failure so “bigger is better.” Conversely, when considering the opportunity function, 

“big is bad” (Ben-Haim 2006). The different behaviors these functions illustrate the 

potential pernicious and propitious consequences of uncertainty. 

Information to decision-makers: To help inform decision makers, Info-gap 

presents visualizations showing robustness and opportuneness for each strategy as a 

function of   and . Typically, uncertainty is plotted on the y-axis and target 

performance values on the x-axis, since the latter are considered as exogenously chosen 

by decision makers. In such visualizations, robustness describes the maximum level of 

uncertainty that can be borne while ensuring a given “critical” (minimum) outcome, 

and opportuneness describes the minimum level of uncertainty that is necessary to yield 

the possibility of a given “windfall” (maximum) outcome.  

The analysis then calculates robustness and opportuneness curves for each 

strategy using the same uncertainty model. Decision makers may then choose to: i) 
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minimize worst-case outcomes by using the robustness curve, ii) maximize best-case 

outcomes by using the opportuneness curve, or iii) seek a strategy that provides some 

attractive tradeoff between robustness and opportuneness. Info-gap does not identify 

any unique best strategy, although in relatively rare cases some strategies may dominate 

at all values of . Rather, it provides decision makers information about the tradeoffs 

between strategies with the best expected outcomes and those that still perform 

relatively well when faced with unexpected and harmful circumstances. 

3.2 Info-gap Analysis of Robust GHG Emissions Reductions Paths 

To implement Info-gap for the evaluation of emission abatement policy we begin 

by creating an uncertainty model from the four uncertain DICE input parameters and 

their central estimates as shown in Table 1. For convenience we set u1 = θ3, u2 = λ* and 

u3 =  gσ. Since u4 represents the probability of a vulnerable MOC, we calculate the 

utility from a probability weighted combination of utilities with and without the 

possibility of an MOC shutdown.  

The simplest Info-gap uncertainty model is interval-bounded, where the uncertain 

parameters are taken as varying within some interval with bounds scaled by the term α. 

The interval bounds need not be symmetrical around the central estimate, which is the 

case for the first three parameters in Table 1. A weighting function ψ thus scales the left 

and right sides of the interval.  

This interval-bounded model is appropriate for u1 and u3, where there is no known 

relationship between the parameters.  However, we expect some possible dependence 
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between the climate sensitivity and MOC vulnerability.3 We therefore adopt an 

ellipsoid uncertainty model, which scales the co-variation of u2 and u4:  

 

     

 

 (3) 

where,  and  scale the lower and upper bounds of the set of possibilities: ψl = 

[0.07,2.9,0.127,0.5]T, ψu =  = [0.285,11.6,0.071,0.5]T,  is the step function  

if  and  otherwise, and  scales the strength of covariance between u2 and 

u4. The use of the step function means that the ellipse is asymmetric with respect to 

climate sensitivity.  

Figure 4 shows the six different two-dimensional projections of this four-

dimensional Info-gap uncertainty model, with contours representing the space of 

possibility at four illustrative values of the uncertainty bound α. The outer bound 

encompasses most of the samples in the range of values of u originally tested by MLK, 

whilst the intermediate values are equally spaced up to this outer bound. The central 

value u  is depicted with a cross. The figure has been constructed from MLK’s full-

factorial sample of the multi-dimensional space. Using these results, we construct 

robustness and opportuneness curves for each of the four strategies, identifying for each 
                                                
3 While the MLK analysis assumes uncorrelated parameters, the dependence stipulated 

here is certainly plausible, and is useful to demonstrate the flexibility of Info-gap to 

model such relationships. 
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sample within a set  the corresponding performance  for each strategy q.  

Figure 5 shows the robustness curves ascending to the left and the opportuneness 

curves ascending to the right. At zero uncertainty EUM yields the greatest, and BAU 

the lowest, utility.  As the horizon of uncertainty increases, the EUM robustness curve 

increases more slowly than SF and LDC. If decision makers are willing to accept 180 

less utility, about 1% of the full range of BAU outcomes, SF becomes most robust. If 

they are willing to accept 980 less utility, about 7% of the full BAU range, then LDC 

emerges as the most robust. The value of α at which this second robustness curve 

crossing takes place is not high – an α of 0.15 is well within the bounds of possibility. 

Thus, of all the strategies, LDC can guard most effectively against the potential down-

sides at this and higher levels of uncertainty. However, this robustness is bought at the 

price that corresponds to a few percent of global economic product compared to EUM. 

While for low uncertainty LDC represents a considerable sacrifice of utility, if broader 

ranges of uncertain parameters are plausible then LDC is more effective at avoiding the 

possibility of undesirable outcomes. If, on the other hand, decision makers consider this 

horizon of uncertainty implausible then SF is the more robust option. BAU is the least 

robust throughout. 

The opportuneness curves of EUM, SF, and LDC are similar in slope and do not 

cross. These curves therefore provide no further information to help distinguish among 

these three strategies. BAU does show more rapidly increasing utility at high horizons 

of uncertainty and beyond α = 0.7 actually yields the highest utility. BAU’s possible 

up-side advantage should be weighed however against its lower robustness overall and 

worse performance at lower horizons of uncertainty.  
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4. APPLICATION OF RDM  

RDM provides an iterative, analytic decision support methodology, often 

embedded in a process of participatory stakeholder engagement,4 intended to support 

decisions under conditions of ‘deep uncertainty,’ that is, conditions where the parties to 

a decision do not know or do not agree on the system model(s) relating actions to 

consequences or the prior probability distributions for the key input parameters to those 

model(s) (Lempert et al. 2003; Lempert and Collins 2007). In addition to informing 

quantitative tradeoffs among decision options, RDM also employs concepts from the 

qualitative scenario planning literature (Bishop et al. 2007) to facilitate group decision 

making in contentious situations where parties to the decision have strong 

disagreements about assumptions and values (Lempert and Popper 2005; Bryant and 

Lempert 2010). The discussion here will focus on RDM’s analytic elements. 

4.1 Description of the Method 

As shown in Figure 3, RDM begins by specifying strategies for consideration and 

then constructs a representation of the deep uncertainty designed to inform the choice 

among the strategies.  The approach informs decision makers by providing scenarios 

that describe future conditions where strategies fail to meet their goals. These scenarios 

then support comparisons of the robustness of alternative strategies. We now discuss in 

detail RDM’s representation of uncertainty, its decision criterion, and the information it 

provides.  

Description of Deep Uncertainty: RDM represents uncertainty with a set of 

multiple, plausible future states of the world. Bankes (1993) distinguishes between 

                                                
4 RDM follows the ‘deliberation with analysis’ process recommended in (NRC 2009). 
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‘consolidative’ and ‘exploratory’ models. The former are validated and predictive.  The 

latter provide a mapping of assumptions to consequences, without any judgment 

regarding the validity of alternative assumptions. RDM employs this ‘exploratory 

modeling’ concept to create a large database of individual model runs.  Each element in 

the database represents a plausible future, described by a set of assumptions, and the 

resulting consequences, described by the values of outcome measures of interest.  The 

assumptions can be described in state space 
  

€ 

 
X i{ }, where   

€ 

 
X  is the space of uncertain 

input parameters to the simulation model and 

€ 

i  indexes alternative values of these 

parameters, or in probability space 
  

€ 

ρi
 
X ( ){ }, where 

€ 

i  indexes alternative probability 

weightings over the space   

€ 

 
X . 

To make this database of simulation runs useful for decision-makers, RDM 

organizes the analysis within a vulnerability-and-robust-response framework (Lempert 

et al. 2004).  As shown in Figure 3, the analysis begins by specifying one or more 

proposed strategies and characterizes the uncertainty according to its impact on the 

choice among options.  For instance, given a proposed decision A that aims to achieve 

some goals, an RDM analysis might, similarly to the policy region analysis of Watson 

and Buede (1987), divide the set of plausible futures 
  

€ 

 
X i{ } into two subsets: 

  

€ 

 
X A{ }, 

those states where A achieves it goals and 
  

€ 

 
X ~A{ }, those states where A fails to achieve 

its goals. As described below, RDM might then use statistical analysis and 

visualizations of the results database to concisely summarize for decision makers the 

combinations of assumptions that best distinguish between the sets 
  

€ 

 
X A{ } and 

  

€ 

 
X ~A{ }.  

Robustness Criteria: RDM analyses have employed several definitions of 
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robustness, including trading some optimal performance for less sensitivity to broken 

assumptions and performing reasonably well compared to the alternatives over a wide 

range of plausible futures. The first definition is often most appropriate when decision 

makers agree on a best estimate probability distribution over   

€ 

 
X . The second definition, 

related to Starr’s domain criteria (Schneller and Sphicas 1983), is often most 

appropriate when no such distribution exists. Lempert and Collins (2007) show that in 

some cases at least these two definitions lead to similar tradeoffs among strategies.  

This study uses the first definition. 

To formalize this first definition, Lempert and Collins (2007) assume a set of 

strategies  

€ 

s∈
 
S  with performance 

€ 

Ps x( ) in each of a set of plausible states of the 

world  

€ 

x ∈
 
F  and a set of probability distributions 

  

€ 

ρi x( )∈
 
D  over these states of the world.  

The expected regret of strategy s  contingent on distribution i is given by 

       

€ 

R s,i = Rs x( )ρi x( )dx
x
∫                                                          (4) 

where 

€ 

Rs x( ) =Max
s'
Ps' x( )[ ]−Ps x( ) is the regret (Savage 1954) of strategy s in state 

€ 

x .  

The optimum strategy 

€ 

b for the decision makers’ best estimate distribution 

€ 

ρbest x( ) is 

the strategy that minimizes the expected regret 

€ 

R b,best . The worst case for this strategy is 

given by 

€ 

R b,worst , where 
  

€ 

ρworst x( ) ∈
 
D  is the distribution that yields the largest expected regret 

for strategy s . A robust strategy exists when decision makers can trade some optimal 

performance for less sensitivity to broken assumptions.  That is, compared to the optimal 

strategy a robust strategy r will have a smaller value of the weighted average, 

€ 

Vr , of the best 

and worst expected regret,  

 

€ 

Vr = 1− z( )R r,best + zR r,worst < 1− z( )R b,best + zR b,worst                               (5) 
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for some range of z on the interval 

€ 

0 < z ≤1.  As described below, the parameter

€ 

z  will be a 

function of the decision makers’ preferences, risk aversion, and level of uncertainty about the 

distribution 

€ 

ρbest x( ).  

A regret-based measure of performance is often useful for RDM, though not 

necessary, for at least several reasons.  First, Eq (5) interpolates between the optimum 

and minimax decision criteria.  For 

€ 

z=0, the equation yields the ordering of strategies 

produced by an expected utility calculation. For 

€ 

z=1, the equation yields the minimax 

decision criteria if   

€ 

 
D  includes distributions which put all their weight on a single state 

of the world (e.g. delta functions).  The regret measure can also focus decision makers’ 

attention on those future states of the world most important to their decision.  In some 

futures, outcomes will be desirable or undesirable largely independent of the decision 

taken, while in some futures the desirability of outcomes may depend strongly on 

decision makers’ choices. The regret criteria can help focus attention on these later 

cases.   

Information to Decision Makers: The decision sciences literature suggests that 

decision support tools can provide information to support two distinct types of tasks: a 

choice task that involved choosing among a menu of available options and a decision 

structuring task that involves defining the scope of the problem, goals, and the options 

under consideration. Many analytic methods for decision support focus primarily on the 

choice task. RDM aims to support both types of tasks. 

RDM’s third step supports the choice task with various visualizations that 

describe, similarly to Info-gap, the tradeoffs among alternative strategies.  When 

defining robustness as trading some optimal performance for less sensitivity to broken 



-18- 

assumptions, RDM analyses often present visualizations showing the expected regret of 

alternative strategies as a function of the probability assigned to the scenarios where the 

optimal strategy fails to meet its goals. (See, for example Fig 7 in (Lempert and Collins 

2007) and Fig 4.12 in (Groves et al. 2008)).  Such visualizations often help define a 

probability threshold, that is, a value above which the likelihood of failure is 

sufficiently high that decision-makers ought to consider abandoning the optimal or 

proposed strategy for some alternative. Such probability thresholds provide a means to 

utilize imprecise probabilistic information in situations where decision makers may 

have very different expectations.  For instance, (Dixon et al. 2007) used such thresholds 

to help reduce the salience of disagreements about the likelihood of large terrorist 

attacks in the public debates regarding Congressional reauthorization of TRIA. 

RDM’s second step supports the decision-structuring task.  As shown in Fig 3, 

this stage of the analysis characterizes uncertainty by concisely summarizing the future 

conditions where a proposed strategy would fail to meet its goals (Lempert et al. 2006; 

Bryant and Lempert 2010). These clusters of cases share key attributes with scenarios 

as described in the scenario planning literature, specifically the concept of presenting 

multiple plausible futures each with a sense of plausibility rather than prediction. This 

approach can expand the range of cases considered (Kuhn and Sniezek 1996) by 

making unexpected or inconvenient futures psychologically less threatening to those 

holding different worldviews (Schoemaker 1993; EEA, 2009 ). The scenario literature 

(van der Heijden 1996) and our experience with RDM suggests that considering a 

multiple, plausible scenarios can also assist decision makers in thinking more 

expansively about policy options and, in particular, ways in which options intended for 
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one future might by augmented to improve the ability to adapt if another future comes 

to pass.  

4.2 RDM Analysis of Robust GHG Emissions Reductions Paths 

The RDM analysis of emissions abatement policy begins by choosing an initial 

candidate strategy.  To assist in this choice, the right side of Figure 2 plots the 

distribution of regret 

€ 

Rs x( )  (see Eq 4) for the four strategies 

€ 

s∈ BAU,EUM ,SF ,LDC{ }  in 

each of the 2662 states of the world analyzed by MLK. The expected regret (solid lines) 

and the expected value of the highest 5% of regrets (dashed lines) are also shown for 

each strategy.  Note that the ranking of strategies by expected regret is identical to the 

ordering of strategies by expected utility in Figure 2 (left side). 

In many applications one might choose as the initial candidate strategy that with 

the best expected utility, in this case EUM. Here, however, we choose SF as the initial 

candidate because the distribution of regrets in Figure 2 suggests this strategy sacrifices 

only a small amount of expected regret relative to the EUM in return for a large 

improvement in performance for the worst 5% of cases. 

The next step is to characterize the vulnerabilities of the SF strategy. This step 

aims to help decision makers understand the tradeoffs involved with choosing SF and to 

encourage them to think about potential modifications to the strategy that might reduce 

vulnerabilities.  

To characterize a strategy’s vulnerabilities requires establishing a criterion for 

acceptable and unacceptable performance.  Some applications might provide a natural 

choice for such a criterion, for instance a budget constraint, an organization’s 

requirements for return on investment, or well-defined stakeholder preference.  In this 
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test case, however, we infer a threshold that might approximate decision makers’ 

preferences. We define the SF strategy to have unacceptable performance in any future 

state of the world that yields a regret greater than 272, which characterizes the worst 

15% (402 of 2662) SF cases in the database. 

We then use a statistical “scenario discovery” process (Bryant and Lempert 2010) 

to provide a concise description of those cases where the SF strategy fails to meet its 

goals. Here we use a modified version of the PRIM (Patient Rule Induction Method) 

(Friedman and Fisher 1999) to identify hyper-rectangular regions in the space defined 

by the four uncertain model input parameters in Table 1 that are highly predictive of 

high regret cases for the SF strategy.  In particular, PRIM seeks to identify one or more 

such “scenarios” that maximize three measures: coverage, the percentage of high regret 

cases contained within the scenarios; density, the percentage of cases within the 

scenarios that have high regret; and interpretability, the ability of the scenarios to 

provide insight to decision makers. Following the experience of the qualitative scenario 

planning literature, we assume that hyper-rectangular regions defined by two or three 

parameters are more interpretable, and that interpretability drops as more parameters 

are used to define the region. In general, these three measures are in tension with one 

another (e.g. increasing density decreases coverage) so that PRIM generates a set of 

scenarios along an “efficient frontier” that allows the user to choose the scenarios that 

they find represents the best possible tradeoff among the measures for their application. 

We implement this process using a “scenario discovery toolkit” that combines the 

PRIM code with a variety of useful graphical and diagnostic routines for scenario 
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discovery (Bryant and Lempert 2010).5 The results are shown in Table 2.  Two of the 

four uncertain input parameters – the climate sensitivity and the possibility of MOC 

collapse – dominate in explaining the high regret cases for the SF strategy.   

The first scenario suggests that SF performs poorly in those futures with 

extremely high climate sensitivity, 

€ 

λ* ≥  9.2.6 This Catastrophic Climate Sensitivity 

scenario describes 149 of the 402 high regret cases for SF (37% coverage). SF has high 

regret in about two-thirds of the cases within this scenario (62% density). The SF 

strategy fails to meet its goals in this scenario because its near-term emissions 

reductions are too low compared to those of LDC, which of the four strategies 

considered does the best job of limiting climate impacts in these high sensitivity cases.  

The second scenario in Table 2 suggests that SF also performs poorly in futures 

with very low climate sensitivity,

€ 

λ* ≤1.20, and the MOC vulnerable to shutdown.  This 

scenario describes 198 of the 402 high regret cases for SF (49% coverage) and SF has 

high regret in about four-fifths of its cases (82% density).  At first glance, this scenario 

might seem counter-intuitive because it mixes favorable conditions – a low climate 

sensitivity – with adverse conditions – a possible MOC collapse.   

To explain why SF fails to meet its goals in this scenario consider which strategy 

                                                
5 This toolkit, implemented in the R statistical computing environment, is available at 

http://cran.r-project.org/web/packages/sdtoolkit/index.html. 

6 Our experimental design contains no values for λ* between 5.9 and 12.4—values 

leading to acceptable and unacceptable regret, respectively. We choose the midpoint λ* 

= 9.2, as our scenario boundary, noting that a denser sampling in this region might help 

refine this choice. 
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performs best. Figure 6 shows the optimum strategy as a function of the parameters 

describing climate sensitivity and the potential for an MOC collapse. The size of each 

dot shows the regret of the second-best strategy in each case. BAU performs best in this 

scenario in the upper left-hand corner of the figure.  SF fails in these futures because it 

reduces emissions too much, an interpretation consistent with the scenario’s low values 

of λ*, but in apparent conflict with the scenario’s vulnerable MOC.  

This apparent conflict is explained by considering how the SF strategy 

implements learning. SF is designed to begin with moderate near-term emissions 

reductions and then to increase its reduction rate if and when it learns that the MOC is 

vulnerable. However, in those futures with very low λ* the MOC is highly unlikely to 

collapse whether or not it is vulnerable because, as noted above, the critical threshold 

rises with declining climate sensitivity. In such circumstances SF unnecessarily 

increases its rate of emissions reductions and thus suffers high regret compared to 

BAU. We label this cluster of cases the Over Reaction Scenario. 

Figure 7 shows the fraction of high regret cases for the SF strategy for each of the 

points in our experimental design.  The two scenarios characterize these high regret 

cases reasonably well, although miss some high regret cases with a vulnerable MOC 

and climate sensitivity between values of about 4 and 6.  Overall the Catastrophic 

Climate Sensitivity and Over Reaction scenarios have coverage of 86% and density of 

72%.  

These two scenarios now support a choice task -- evaluating the tradeoffs 

among the SF, BAU, EUM, and LDC strategies. Figure 8 shows the expected regret for 

the four options as a function of the probability ascribed to the Over Reaction and 
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Catastrophic Climate Sensitivity scenarios, labeled here as 

€ 

pOR  and 

€ 

pCCS respectively. 

The upper-left hand panel shows that SF has low regret when 

€ 

pCCS  lies in below about 

60% and is greater than about one-half the probability ascribed to the Over Reaction 

scenario, that is 

€ 

pCCS > 0.45pOR . EUM has low regret when 

€ 

pCCS  is less than about 40%. 

LDC has low regret when the probability ascribed to this scenario is greater than about 

40%.  Thus relative to EUM, SF increases the range of probability for which it can 

successfully address the catastrophic scenario, but at the cost of performing more 

poorly when the probability of the over reaction case is high. 

The parameter probability density functions used by MLK suggest that the joint 

probability of these two scenarios is approximately 9%, as shown by the star in Figure 

8. The figure thus suggests that if decision makers are confident in the MLK 

probability estimate they should choose EUM.  If they worry 

€ 

pCCS may be significantly 

higher than the MLK estimate, then SF may be a reasonable choice, but only if 

decision-makers believe 

€ 

pOR  is sufficiently low. Decision makers should only choose 

LDC if they are confident MLK has significantly underestimated 

€ 

pCCS . 

In addition to informing the choice among strategies, the scenarios also support a 

decision structuring task – augmenting the set of options considered.  In particular, 

decision makers and analysts might identify modifications to the SF strategy’s learning 

algorithm that would eliminate its poor performance in the Over Reaction scenario 

without degrading its performance in the Catastrophic Climate Sensitivity scenario or 

introducing any significant new vulnerabilities. If decision makers believed they had 

identified such a strategy, the RDM analysis would be rerun to characterize any 

vulnerabilities of this improved SF strategy and to evaluate its tradeoffs with the 
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alternative options. 

5. COMPARISON AND CONCLUSIONS 

This study compares two approaches – Info-gap and RDM – that can help 

decision makers concerned with climate change and many other types of decision 

challenges identify and evaluate potential robust strategies.  The study uses each 

approach to evaluate alternative strategies for reducing climate-altering greenhouse gas 

emissions given the potential for non-linear threshold response in the climate system, 

deep uncertainty about any such abrupt change and other key parameters, and the 

ability to learn about any thresholds over time. 

In their broad characteristics, Info-gap and RDM share many similarities.  Both 

represent uncertainty with sets of multiple plausible representations of the future, rather 

than a unique probability density function over future states of the world.  Both 

incorporate the concept of robust satisficing – that, under some circumstances, decision 

makers may prefer strategies that perform acceptably well over a wide range of 

conditions to strategies that maximize performance under expected conditions. Both 

Info-gap and RDM provide decision support in the form of tradeoff curves comparing 

alternative strategies rather than provide any definitive, unique ordering of options.  

For the GHG emission reduction decision considered here, Info-gap and RDM 

make broadly similar recommendations that nonetheless differ in their particulars. Both 

approaches suggest BAU is a poor choice. Both suggest LDC might be favored by 

decision makers primarily concerned with futures that deviate significantly from 

current best estimates.  Info-gap shows similar performance for SF and EUM and 

suggests the former offers more robustness for a small cost in optimal performance.  
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RDM offers a less positive view of SF, suggesting the strategy offers more robustness 

than EUM against catastrophic climate change, but increases the risk of over-reacting in 

some cases where climate change proves small.  

The two methods reach these insights by following different analytic paths: 

treating losses and gains in different ways, taking different approaches to imprecise 

information, and arranging their analyses in different orders. 

Info-gap explicitly considers both the potential gains if conditions turn out better 

than expected or losses if they turn out worse.  RDM does not explicitly differentiate 

between losses and gains. However, RDM’s scenario discovery process can identify 

cases representing each situation – for instance in the Over Reaction scenario SF fails 

to produce gains as large as BAU or EUM -- and enable decision makers to trade one 

against the other.  

The Info-gap decision analysis asks decision makers to set minimum and 

aspirational performance levels and to favor the strategies that meet these levels, 

respectively, over the widest and narrowest range of uncertainty. The approach does not 

provide any rules for balancing between the most robust and most opportune strategies.  

RDM considers imprecise probabilities and suggests probability thresholds – the 

likelihood ascribed to a scenario that might cause a decision maker to choose an 

alternative strategy.   

The two approaches sequence their steps in opposite orders with resulting 

implications for the style and content of the analysis. Info-gap first builds an 

uncertainty model and then analyses the performance of a set of decision options over 

the range of uncertainties. The approach requires a series of judgments from analysts 
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and decision makers, in constructing the uncertainty model and adjudicating the trade-

offs between alternative options’ robustness and opportunity. Nonetheless, Info-gap 

provides a relatively well-structured set of steps for analysts and decision-makers to 

follow. 

In contrast, RDM conducts a vulnerability and robust response analysis, 

characterizing deep uncertainties contingent on particular proposed strategies and then 

describing the tradeoffs involved in addressing these uncertainties. RDM is less a fixed 

recipe than an overall concept and a set of methods that for any specific decision can be 

combined in varying ways to implement that concept. With another example, the 

approach might have unfolded differently than in this study.  RDM requires a series of 

judgments that shape the form and content of the analysis, choosing: the strategies with 

which to begin the vulnerability analysis, a regret-based or absolute performance 

criteria, the benchmark levels that constitute acceptable performance, the set of 

scenarios (among those suggested by the scenario-discovery algorithms) that best 

characterize the vulnerabilities of the strategies under consideration, and appropriate 

visualizations to summarize the tradeoffs among strategies implied by these scenarios. 

In return, RDM has in this example characterized the cases where a proposed strategy 

does not perform acceptably. This information not only helps decision makers choose 

among decision options, it can also help them identify an improved set of options.7  

This comparison of two approaches for assessing robust strategies suggests at 

                                                
7 These differences between the methods are often softened in practice.  Some Info-gap 

studies have identified the sets of conditions that correspond to the points on the 

robustness curve. Some RDM studies have treated losses and gains differently. 
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least two strands of further study.  First, empirical research on decision makers’ 

preferences could measure how the different balance of attributes provided by the Info-

gap and RDM approaches affect decision makers’ understanding and policy preferences 

in alternative decision contexts.  As an example of such evaluations, recent work has 

compared water managers’ responses to RDM, traditional scenario approaches, and 

expected utility analyses (Groves et al. 2008b; Groves et al. 2008c).  These evaluations 

suggest that water managers found that RDM provided more useful information for 

decision making, but found it less easy to explain than the other two types of analyses. 

Comparative evaluations of how the Info-gap and RDM approaches affect decision 

makers might provide useful insights on these two methods and on robust decision 

approaches more broadly. 

Second, it would be useful to understand in general the conditions where 

alternative robust decision approaches – such as Info-gap, RDM, robust optimization, 

and others -- give similar and differing assessments of options. Given the diversity of 

definitions of robustness, and the differing judgments called for in implementing 

alternative robust decision methods, it is perhaps surprising they often reach similar 

results.  A deeper understanding of why and when this is the case could help improve 

the foundations of robust decision methods. 
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Figure 6: Optimum strategy in each of 2662 cases as a function of climate sensitivity and MOC 
vulnerability. Size of bubble is regret of next best strategy. Shaded regions show “Over 
Reaction” and “Catastrophic Climate Change” scenarios. 
 

 
Figure 7: Number of cases where SF strategy has high regret (dark bubbles) compared to number 
of all cases (white bubbles) as a function of climate sensitivity and MOC vulnerability. Shaded 
regions show “Over Reaction” and “Catastrophic Climate Change” scenarios. 
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Figure 8: Expected regret of SF, BUA, EUM, and LDC strategies as a function of the probability 
ascribed to the “Over Reaction” and “Catastrophic Climate Change” scenarios. The star at 
(9%,9%) indicates best-estimate probabilities as reported in MLK. 
 
 
 


