1) **Fracture vs. Frictional Sliding** [25] Calculate the maximum length of a thrust sheet that can be pushed from the rear as a coherent block, prior to internal failure. Include a sketch that defines all relevant parameters. Assume that the block: 1) rests on a horizontal surface with friction coefficient \(\mu \) and 2) obeys the Coulomb criterion for shear failure with cohesion \(C \) and coefficient of internal friction \(\mu' \). Present your answer in simplified form, with specific values given for a few reasonable values of the relevant parameters. Cite any references used.

2) **Coulomb Failure** [25] Starting from the Coulomb failure criterion and a stress state \(\sigma_1 > \sigma_2 \), derive the optimum angle for Coulomb failure in terms of the relationship between \(\alpha \) and the Coulomb parameters \(\tau, \mu' \) and \(C \), where \(\alpha \) is the angle between \(\sigma_1 \) and the normal to the eventual failure plane, \(\mu' \) is the coefficient of internal friction and \(C \) is the cohesion. State carefully whether the optimum angle \(\alpha \) depends on \(\mu' \) and/or \(C \).

You may proceed geometrically, or you might like to proceed algebraically, using calculus (hint: failure occurs when the difference between \(\tau \) and \((\mu' \sigma_n) \) is maximum, which you can find by writing \(\tau \) and \(\sigma \) in terms of \(\alpha \) and taking a derivative.)