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Fracture energy is a form of latent heat required to create an
earthquake rupture surface and is related to parameters governing
rupture propagation and processes of slip weakening1–3. Fracture
energy has been estimated from seismological and experimental
rock deformation data4–8, yet its magnitude, mechanisms of rupture
surface formation and processes leading to slip weakening are not
well defined8–10. Here we quantify structural observations of the
Punchbowl fault, a large-displacement exhumed fault11,12 in the San
Andreas fault system, and show that the energy required to create
the fracture surface area in the fault is about 300 times greater than
seismological estimates would predict for a single large earthquake.
If fracture energy is attributed entirely to the production of fracture
surfaces, then all of the fracture surface area in the Punchbowl fault
could have been produced by earthquake displacements totalling
<1 km. But this would only account for a small fraction of the total
energy budget, and therefore additional processes probably con-
tributed to slip weakening during earthquake rupture.
Numerous models have been proposed that provide a basis for

relating the macroscopic energy budget to physical processes of
earthquake slip10,13. In the commonly used slip-weakening model,
the elastic strain energy released during an earthquake is partitioned
between the fracture energy, EG, the frictional heat, EH, and the
energy radiated as seismic waves, ER (refs 10, 14) (Fig. 1). EH, often
considered a large component of the total energy budget, does not
directly influence earthquake rupture dynamics, whereas the relative
magnitude of ER to EG, expressed by radiation efficiency hR ¼ ER/
(ER þ EG), plays a fundamental role2,14,15. EG describes the flow of
energy at rupture tips that is required to form a rupture surface and
produce a breakdown in strength1,2 (Fig. 1). For small EG (hR ¼ 1),
an earthquake rupture is considered very brittle, rupture speed is
rapid, and growth is favoured. Currently, the details of energy
partitioning, the magnitude of each energy term, and whether hR

varies with earthquake magnitude and tectonic setting are not well
known13–15.
Some constraints on EG are provided by laboratory estimates of

the specific fracture energy, G, defined by G ¼ EG/S, where S is the
area of the rupture surface10. For a tensile fracture in brittle material,
G is nearly equivalent to the free-surface energy of the fracture16,17.
Experiments show that G for shear fracture of intact rock under
pressures up to 470MPa is greater than that for tensile cracking, and
that G increases with normal stress and roughness for frictional
slip4,5,18. These observations may reflect the formation of microfrac-
tures and extreme fragmentation associated with the formation of
shear surfaces4,19–22. Some seismologic data suggest that G increases
with earthquake size8, qualitatively consistent with scaling relations
between rupture dimension and extent of associated fracture
damage22. Yet whether other processes, such as fluid pressurization
or melt lubrication, also contribute to rupture formation and the
breakdown in strength is still unknown8–10,23.

To answer this question, the magnitude of the total free-surface
energy of fractures produced during an earthquake rupture must be
determined. It is essential that this estimate should account for the
fracture surface energy in the broad zone of damage bounding a fault,
as well as that harboured within the narrow, intensely fragmented
core2,3,7. Accordingly, we use structural observations of the Punchbowl
fault zone to quantify the total fracture surface area, ST, which includes
the surface area of cataclastic particles in the ultracataclasite, SUC, the
surface area of gouge particles in subsidiary faults of the damage zone,
SSF, and the surface area of microfractures in the damage zone, SMF

(Fig. 2). This study provides the first quantification of fracture surface
area over the entire deformed zone of a mature fault expressed as
fracture surface area per unit area (in m2) of the macroscopic fault
surface. The surface area of each component is determined by direct
observation of fractures and particle sizes, and scaling relations for
particle size and subsidiary fault length, thickness and density. We use
ST to calculate the total fracture surface energy and relate this to the G
of an earthquake. In sodoing,we assume that all fracture damage in the
Punchbowl fault zone was produced during seismic slip12.
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Figure 1 | Simple representation of the energy budget for earthquakes on
the basis of fault slip-weakening models10,14,15. The upper line bounding
region ER shows a shear stress drop from initiation of earthquake slip to a
total slip, d. Frictional, or resistive, strength is shown by the lower line
bounding region ER. Frictional strength decreases with slip over a
characteristic displacement, d c, to a residual friction level. For brevity, more
complex variations in shear stress and resistive strength expected for actual
earthquake events13,15 are not shown. jo, initial stress; j f, final, frictional
stress. Details of energy partitioning aremodel-specific. In general, however,
the radiated energy, ER, is the difference between the mean shear stress and
mean resistive strength2,15.
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The Punchbowl fault is a 200-m-thick zone of fractured rock
containing a core several metres thick of sheared cataclasite and
ultracataclasite11,12,24. The fault records extreme localization of slip
similar to other ancient exhumed and active seismic faults12. The
Punchbowl fault juxtaposes igneous and metamorphic rocks of the
San Gabriel complex and arkosic sandstones of the Punchbowl
Formation along a continuous layer of ultracataclasite. Deformation
is dominantly brittle and the fault is exhumed to a depth of 2–4 km
(ref. 11). The ultracataclasite layer is 4 cm to 1m thick, and displays a

relatively planar, continuous surface that served as the principal slip
surface during the last several kilometres of displacement12. The
principal slip surface is a layer 1mm thick of ultracataclasite
distinguished by uniform birefringence, contains porphyroclasts of
older ultracataclasite that record reworking, and has at least one
relatively distinct and planar boundary25. Particles greater than
10 mm in diameter constitute 28%of the ultracataclasite, themajority
of which are fragments of microscopic veins11. Transmission electron
microscopy reveals particles of host rock less than 100 nm in
diameter25 (Fig. 3). The smallest (4 to 50 nm) particles imaged are
cataclastic particles or euhedral grains produced by syn- and post-
faulting reaction. Measurements of particle size in plane section12 are
consistent with N(D) ¼ cD2a, where D is particle diameter, N(D) is
the number of particles for each size bin, and a and c are constants,
with a ¼ 2.0 and c ¼ 0.07 (Fig. 3b).
The total fracture surface area in the ultracataclasite is determined

assuming spherical particles with a power-law size distribution. Our
observations indicate that the upper cut-off is 0.1mm, and we
assume that particles ,50 nm in diameter follow the same power-
law distribution to a lower cut-off of 1.6 nm. Using a mean layer
thickness of 0.3m and the ratio of surface area to volume for spheres
(3/r), gives a SUC of 1.3 £ 108m2 per unit area of the fault surface.
The total surface area in the 1-mm-thick principal slip surface is
4.2 £ 105m2 per unit area. The surface area per unit volume of the
Punchbowl ultracataclasite is similar to that determined for gouge of
the San Andreas fault at Tejon Pass26.
Subsidiary faults of the damage zone are consistent with scaling

relations between number, length, displacement and thickness of
brittle faults in crustal rock22,27. Faults typically are metres in length,
,1mm thick and display centimetre offsets. Faults up to 1–2 cm
thick, with 1–2-m offsets, are also present11 (Fig. 4). Linear density,
PL, of subsidiary faults in the Punchbowl Formation decreases with
the logarithm of distance from the ultracataclasite (Fig. 4). For the
entire damage zone, we assumeN(L) ¼ cL2a, where L is fault length,
N(L) is the number of faults for each length bin, a ¼ 1 and c ¼ 2,500,
the ratio of fault displacement to length is 0.01, and the ratio of
thickness to displacement is 0.005.
Subsidiary fault gouge is coarser-grained than the ultracataclasite

(Fig. 3b), and particles 100–200 mm in diameter comprise 25% of the
total volume. We assume particle size distributions fit N(D) ¼ cD2a

with constants a ¼ 2.0 and c ¼ 0.15, and have an upper cut-off of
200 mm and lower cut-off of 0.8 mm. Assuming the orientation of
subsidiary faults is isotropic, such that the surface area is twice PL

(ref. 28), integrating over the damage zone, and using scaling
relations for fault thickness and particle size, we calculate a value
for SSF of 3.3 £ 106m2 per unit area of the fault surface.
The linear density of microfractures in the Punchbowl Formation

decreases with the logarithm of distance from the ultracataclasite to a
constant, regional density at approximately 100m (Fig. 4). Integrat-
ing over the damage zone, assuming microfracture orientations are
isotropic, and doubling for the two surfaces of a microfracture, gives
a value for SMF of 2.4 £ 106m2 per unit fault area.
The total fracture surface area in the damage zone (SSF þ SMF) is

less than 10% of that in the ultracataclasite layer, giving a total
fracture surface area for the entire fault zone, ST, of 1.4 £ 108m2 per
unit fault area. Assuming the free-surface energy to be 1 Jm22, and
that the geometric surface area should be increased by about a factor
of five to account for non-spherical grain shapes and finer-scale
roughness16,19,26, brings the total fracture surface energy to 7 £ 108 J
per unit fault area. Fracture surface energy of the millimetres-thick
principal slip surface is 2 £ 106 J per unit area of the fault surface.
To estimate the energy required to create fracture surfaces during a

single earthquake, we divide the total energy by 10,000 large earth-
quakes (to account for 44 km of total displacement), which yields
7 £ 104 Jm22 per earthquake. This estimate is a lower bound because
it does not include the energy associated with refracturing healed
grain boundaries and comminuted grains enlarged by Ostwald

Figure 2 | Structural model of the Punchbowl fault zone for calculating
fracture surface area. Domains of damaged rock containing subsidiary
faults and microfractures are bounded by undeformed host rock. The central
core of the fault contains an ultracataclasite layer of thickness t. Total fracture
surface area, ST ¼ SUC þ SSF þ SMF; is determined within the column of rock
across the entire fault zone of cross-sectional area APF ¼ 1m2: Calculations
assume damage is symmetric about the ultracataclasite layer.

Figure 3 | Particle size of ultracataclasite and subsidiary fault
cataclasite. a, TEM image of ultracataclasite showing particles 10 to
200 nm in diameter. b, Measurements of particle density as a function of
particle diameter, where density is given as number of particles in a class size,
N(D), divided by area, A. Class sizes from 50–400 nm are imaged using
TEM25 and from 6–400mm are imaged optically12. All measurements are
consistent with a power-law relationwith slope of22. Solid and dashed lines
show particle size distributions assumed for the fracture surface area
calculations of ultracataclasite and subsidiary fault cataclasite, respectively.
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ripening. As an example, if 50% of the ultracataclasite in the
millimetres-thick principal slip surface was refractured during an
earthquake, and the energy to refracture a grain boundary is half of
that required to fracture an intact grain, then fracture surface energy
for a single earthquake increases to approximately 5 £ 105 Jm22.
Our estimate of the energy required to create fracture surfaces

during a single earthquake is small (,1%) relative to estimates of EH/
S for the Punchbowl fault at a depth of 2–4 km, which even for a
coefficient of friction of 0.2 is about 5 £ 107 Jm22. This is in direct
contrast to a recent conclusion that the surface energy of gouge
constitutes half or more of the earthquake energy budget26. Our
estimate also cannot account for seismologic values of G (about
106 Jm22; refs 6–8) unless we assume that a significant number of
healed grain boundaries and ripened grains are refractured in each
successive earthquake, and that all fracturing is attributed to the
breakdown phase of rupture. Because some proportion of fracture
surface area must be produced during sliding at residual friction21,
additional processes such as lubrication, flash heating, and thermal
pressurization probably contribute to the breakdown in
strength8–10,23. These latter processes are compatible with the micro-
structure of the Punchbowl fault ultracataclasite12,25,29, but would not
be recorded by fracture surface area.
The total cumulative fracture surface energy of the Punchbowl

fault is about 300 times greater than the fracture energy, G, for a
single large earthquake. If G is attributed entirely to the creation of
fracture surface, then the observed damage could be produced by
earthquake slip totalling less than 1 km of displacement. The differ-

ent estimates of fracture surface area created during seismic slip on a
mature fault versus that associated with mining-induced rup-
tures19,20,26 may be explained by extensive fracturing during fault
formation and less fracturing associated with slip on an established
fault surface. This explanation is consistent with large values of G
determined in the laboratory for shear fracture relative to that for
frictional sliding4,5. Our results are also consistent with previous
conclusions that the overall structure of large-displacement faults is
established early in faulting history12,30.
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