
JOURNAL Ol• GEOPHYSICAL R•.s•.Aacn VOL. 72, No. 4 FEBaUAaY 15, 1967 

Scaling Law of Seismic Spectrum 
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The dependence of the amplitude spectrum of seismic waves on source size is investigated 
on the basis of two dislocation models of an earthquake source. One of the models (by N. 
Haskell) is called the o• 8 model, and the other, called the •2 model, is constructed by fitting 
an exponentially decaying function to the autocorrelation function of the dislocation velocity. 
The number of source parameters is reduced to one by the assumption of similarity. We 
found that the most convenient parameter for our purpose is the magnitude M,, defined for 
surface waves with period of 20 sec. Spectral density curves are determined for given M,. 
Comparison of the theoretical curves with observations is made in two different ways. The 
observed ratios of the spectra of seismic waves with the same propagation path but from 
earthquakes of different sizes are compared with the corresponding theoretical ratios, thereby 
eliminating the effect of propagation on the spectrum. The other method is to check the 
theory with the empirical relation between different magnitude scales defined for differ- 
ent waves at different periods. The •2 model gives a satisfactory agreement with such obser- 
vations on the assumption of similarity, but the •a model does not. We find, however, some 
indications of departure from similarity. The efficiency of seismic radiation seems to increase 
with decreasing magnitude if the Gutenberg-Richter magnitude-energy relation is valid. The 
assumption of similarity implies a constant stress drop independent of source size. A prelimi- 
nary study of Love waves from the Parkfield earthquake of June 28, 1966, shows that the 
stress drop at the source of this earthquake is lower than the normal value (around 100 bars) 
by about 2 orders of magnitude. 

INTRODUCTION 

Elaborate studies have been made in recent 

years to find seismic source parameters such as 
fault length, rupture velocity, and stress drop 
at the earthquake source from the spectrum of 
seismic waves. Except for the geometric param- 
eters obtained from fault plane studies, how- 
ever, the magnitude is the only physical param- 
eter that specifies most earthquakes. A gap 
exists between the two approaches currently 
used, one based on the use of spectrum and the 
other on amplitude. The purpose of the present 
paper is to fill this gap by finding a first 
approximation to the relation between seismic 
spectrum and magnitude of earthquakes on the 
basis of some dislocation models of earthquake 
sources. For this purpose we must reduce to 
one the number of parameters specifying a 
dislocation. We shall make this reduction by 
assuming that large and small earthquakes 
satisfy a similarity condition. 

The relation between seismic spectrum and 
earthquake magnitude is not a new problem. 
It has been well known that the greater the 
size of an earthquake, the more efficiently 

longer-period waves are generated. In the early 
days of seismology in Japan, much attention 
was given to the presence of large long-period 
motion in P waves from large local earthquakes 
[cf. Matuzawa, 1964]. Analyses of seismic waves 
by Jones [1938], Honda and Ito [1939], Gt•ten- 
berg and Richter [1942], Byerly [1947], Kanai 
et al. [1953], Asada [1953], Aki [1956], Kasa- 
hara [1957], Matumoto [1960], and others 
have shown that the period of the spectral peak 
for P waves, S waves, surface waves, and even 
for coda waves increases with earthquake mag- 
nitude. 

The most convincing evidence for the greater 
efficiency of generating long-period waves by 
larger earthquakes is probably given by Berck- 
hemer [1962]. He compared seismograms ob- 
tained at a station from two earthquakes of the 
same epicenter but of different size. We shall 
reproduce his result later. 

The magnitude of an earthquake is defined as 
a logarithm of amplitude of a certain kind of 
seismic wave recorded by a certain type of 
band-limited seismograph. If there is such a 
size effect on seismic spectra as mentioned 
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above, the unit of magnitude obtained from one 
kind of wave recorded by one type of seismo- 
graph may not correspond to that obtained 
from another kind of wave recorded on another 

instrument. In fact, Gutenberg and Richter 
[1956a] discovered a discrepancy between the 
magnitude scale based upon short-period body 
waves and that based upon long-period surface 
waves. 

It will be shown that the theoretical scaling 
law of the seismic spectrum derived from a 
dislocation model of the earthquake source 
satisfactorily explains the above-mentioned ob- 
servations. 

THEORETICAL MODELS OF THE EARTHQUAKE 
SOURCE 

Following Haskell [1966], we define a dislo- 
cation function D(•, t) which is the displace- 
ment discontinuity across a fault plane at a 
point • and time t. The fault plane extends 
along the /• axis, and D(•, t) is considered as 
the average dislocation over the width w of the 
fault. Taking the starting point of the fault at 
the origin of the (x, y, z) coordinates, and the 
• axis along the x axis, we assume that the 
fault ends at • = L and the surrounding me- 
dium is infinite, isotropic, and homogeneous. 
Introducing polar coordinates (r, O, •,) by the 
relation 

x -'r cosO 

1 

u0 - 4•rbr cos 20 sin • 

ß w ,t -- r- •/cøs 
where a and b are the velocities of P and S 

waves, respectively. The above expressions have 
the foliowing common form: 

V= P(r, O,,i:,,a, b) 

ß w 15 ,t (3) 
½ 

where c is the appropriate wave velocity. In 
terms of the Fourier transform, the above form 
can be written as 

y = r sin 0 cos •v (1) 

z = rsin 0sin•v 

the displacement components of P and $ waves 
at long distances, corresponding to a source of 
longitudinal shear fault [Haskell, 1964] for 
example, can be written as 

U(o•) = P(r, O, 'i:', a, b)A(co) (4) 
where 

= u(O, at 
A(•o) = w e dt 

ß ,t -r--cøsO 
If the medim is dissipative, the equation cor- 
respondhg to (4) will be 

U(oo) = Pit, O, •, a, b, oo, Q(½o)]. A(½o) (6) 
where Q(•o) is the dissipation coefficient. The 
above expression shows that .we can isolate the 
propagation term P((o) which does not, except 
for the direction of fault propagation, include 
the fault motion parameters. Mathematically, 
such a simple isolation is not permitted for an 
arbitrary heterogeneous medium. Practically, 
however, this separation of propagation factor 
from source factor may be permitted, at least 

U,. -- 4•rbr sin 20 sin • 

'wfo ,t-- r - cos 0) a 

V• cos 0 cos qo 

ß Wfo r - cos b 

as a good first approximation. In this paper we 
shall be concerned only with the source factor 
A((o), which can be calculated from the disloca- 
tion D (•, t) according to (5). 

For comparison with observations we shall 
use seismic waves observed at a given station 
from distant earthquakes of the same epicenter, 
the same focal depth, and the same fault plane 
solution, but of different magnitude. The ratio 
of the Fourier transforms of two such seismo- 
grams may be directly compared with the 
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theoretical ratio for the source factor A(o•), 
because the propagation factor P((o) may be 
canceled in the observed ratio. This ingenious 
method comes from Berckhemer [1962]. His 
theoretical model, however, seems unrealistic, be- 
cause, from the point of dislocation theory, his 
model implies that the amount of dislocation is 
constant, independent of the size of the fault. 

Following the general line of approach taken 
by Haskell [1966], we introduce the autocorrela- 
tion function •(•/, •) of •(•, t)' 

(7) 

Putting the Fourier transform of •k(•, •') as 
•(k, o•), we get 

= ff •)e -'•+'•" d• d. (8) 
•(,, •) = • •(k, w)e' •-'•"• dk (9) 
On the other hand, A(w) can be re•tten by 
changing the order of integration and putting 
t' = t --(r -- • cos O)/c in (5) as follows' 

A(•) = we -'"• fff• b(e, 
.e-•.•,+•.• •o• •/• dt • d• (10) 

In the above e•ression the integration fi•ts 
•e extended to i•ty by putting •(•, t) = 0 
for • ( 0 and L ( •. Putt•g the Fourier trans- 
form of •(•, t) as B(k, w), we obtain 

s(•, •) = ff• b(e, t)e -'"'*'• dt de 
(•) 

1 2 ff•• •-• 
Then we have from (10) and (11) 

' ,w (12) 
c 

and 

I.a(•)[: = w •' c , •o (13) 
On the other hand, we get from (7) and (11) 

1219 

l•. ff_• ff• •(•, •) = • b(•, 0 B(•, 
ß e •(•+')-•½•+•) dk &o d• dt 

I ff:•B(k,o•)B(--k--o•) 4•-: ' 

4w 2 

ß e dk &o 

lB(k, o.,)l: 

ß e dk &o 

Comparing this formula with (9), we get the 
well-known relation 

•(k, o•) = lB(k, o•)[ •' (14) 
Finally, we get from (9), (13), and (14) the 
relation between the amplitude spectral density 
IA(•o)] and the Fourier transform of the auto- 
correlation function' 

IA(w)[" = w•[(w cos O)/c, w] (15) 

Thus, the source factor ]A(co)] of the amplitude 
spectral density is expressed in terms of the 
autocorrelation of dislocation velocity /)(•, t). 
We followed Haskell [1966] in deriving the 
expressions above. Haskell, however, calculated 
the energy spectral density from the autocorre- 
lation function $(7, •) of dislocation acceleration 
/•(•, o. 

(16) 

The Fourier transform $(k, w) of t•s function 
is related to •(k, w) simply by 

$(•, •) = • f(•, •) (•7) 
Thus, we obt•n 

2 

•(•)1 • = • $[(• •o• 0)/•, •] 0s) 

As shown above, the amplitude spectral den- 
sity of seis•c waves can be expressed in te• 
of the autocogelation function of •(•, t) or that 
of •(•, t). The autocogelation function of 
•(•, t) can be detersned if the absolu• value 
of the Fourier tramform of •(•, t) is •ven. 
There •e an i•te number of space-time 
f•ctio• that •ve a common spectrM deity 
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but have different phases. By specifying an 
autocorrelation, therefore, we are considering 
an infinite group of space-time functions. The 
model based upon the autocorrelation function 
is different from the deterministic one in this 

respect and may be called 'statistical,' as was 
done by Haskell [1966]. 

Since the earthquake is essentially a transient 
phenomenon, however, the autocorrelation func- 
tion introduced here cannot be treated in the 

same manner as the one for the stationary time 
series. The following figures will schematically 
i]lustrate what form may be expected for the 
autocorrelation function for the dislocation 

process at an earthquake source. Let the dis- 
location start at • - 0 and propagate along the 
• axis with a constant velocity v; then the dis- 
location at • will be zero for t • •/v and will 
take a constant value D0(•) for t • T q- •/v. 
Figure I shows a schematic picture of D(•, t) at 
a given •. The corresponding/)(•, t) and •(•, t) 
are also shown in Figure 1. Their autocorrelation 
functions are shown schematically in Figure 2. 
The dashed lines in these figures are for the case 
in which the dislocation takes the form of a 

ramp function in time. We now construct two 
earthquake source models by fitting'simple 
formulas to the two autocorrelation functions. 

O(S.t) 

r' 

•/,, 

T 

b (%.t) 

II 

',, 

ii 

>t 

Fig. 1. Schematic diagram of dislocation and its 
time derivatives at a given point • on a fault. 
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Fig. 2. Schematic diagram of autocorrelation 
functions of dislocation velocity and dislocation 
acceleration at a given point • on a fault. 

In our first model, we assume that the temporal 
autocorrelation function of dislocation velocity 
decreases exponentially with the lag r, that is 

f_• b(•, t)b(•, t q- r) at - •oe -kr'•l (19) 
Our second model is the one proposed by 

Haskell. I-Ie assumes that the autocorrelation 
function of dislocation acceleration takes the 

following form' 

= (20) 
We shall assume an identical spatial correla- 

tion f•ction for both models. The correlation 

between the dislocation velocity at $ and t and 
that at $ + v and t' - t + V/v, that is 

ff.D(e, t)D(e + de 
• in, cate the degree of pendency of fa•t 
propagation. The pers•tency •1 decrease •th 
the distance v between the two points. FoHo•ng 
•askell, we shah adopt the functional form of 
e -• •,• for t•s expression ,and •so for the co•e- 
sporting function of •(•, 0. 
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The above temporal and spatial autocorrela- 
tion functions are expressed in a single form, if 
we write 

= •oe -•'"'-•'•-"/" (21) 
for the first model, and 

ß e -•'•-"" (22) 
for the second model. Their Fourier transfo•s 
are 

4k•,kL ,•o 
•(•, •) = /• + (• -- •/•)•}(• + • 

(23) 

8k•'kL'q•øa'2 •(•, •) = /•:• + (• -- •/•)•}(• + • • 
(•a) 

Using (15) and (23), we may obtain the 
source factor of amplitude spectral density for 
our first model as follows' 

w ¾/ 4k•,kL •o 

[k•2 + /.COS 0 •) 2(,•2 ] 1/2 (.1,)2) 1/2 + 

To determine the value of •o, we put •o = 0 in 
(10). Then 

(26) 

= w 
Comparing the above equation with (25), we get 

%/4krkL •o = w (27) 
If we define an average dislocation by 

Oo = Z (28) 

we have 

%/ 4krkr •o 
= w DoL (29) 

k•,kL 

Inserting this into (25), we get 

IA½)I 

wDoL 
__ 

1+ co_s 0 2 o• 2 c { lq- (w/k•)2} 
(30) 

for our first model. Since the above function 

decreases proportionally to oJ-'- for large oz, we 
shall call this the 'o>square model.' 

On the other hand, the source factor of ampli- 
tude spectral density for our second model will 
decrease proportionally to o•-• for large oJ. 
q• 0 is equal to L•D dk rk •,•/8, according to Haskell. 
Inserting this into (24) and (28), we obtain: 

wDoL 

½ 2 •0 2 •/2 {i-q-( co-so •)(•'-•'•)} {1-•'(•) :•} 
(31) 

We shall call this the 'o>cube model.' 

ASSUMPTION OF SIMILARITY 

The straightforward way of testing the earth- 
quake source models proposed above is to com- 
pare the predicted spectrum directly with the 
observed one. For this purpose, however, we 
must know about such effects of the propaga- 
tion medium as dissipation and complex inter- 
ferenees on the seismic spectrum for a wide 
frequency range. Although such knowledge has 
been accumulating, especially for long-period 
waves [ef. Press, 1964], it does not yet satis- 
factorily cover the frequency range required 
for the present study. 

As mentioned in the preceding section, we 
will remove this difficulty by comparing seismic 
waves having a common propagational path 
but coming from earthquakes of different sizes. 
Further, in order to specify an earthquake by 
a single source parameter, 'magnitude,' we must 
reduce to one the number of parameters ap- 
pearing in (30) and (31) by assuming that they 
are related to each other in some manner. 



1222 KEIITI AKI 

The simplest of such assumptions may be 
that large and small earthquakes are similar 
phenomena. If any two earthquakes are geo- 
metrically similar, the fault width w is propor- 
tional to the length L. If they are physically 
similar, all the nondimensional products formed 
by the source parameters will be the same. The 
average dislocation Do will be proportional to L 
and, consequently, to w. This implies that if an 
earthquake is a Starr fracture, the pre-existing 
stress or strength is constant and independent 
of source size [Tsuboi, 1956]. Since the wave 
velocity is practically independent of source 
and may be considered constant for our present 
purpose, all the quantities having the dimension 
of velocity must also be constant and inde- 
pendent of source size. Thus, the similarity 
assumptions imply that the rupture velocity v 
is a constant and that all the quantities having 
the dimension of time, such as k• -• and (vkL) -•, 
are proportional to L. 

For simplicity, we shall further assume that 
cos 0 -- 0 and that vkL -- k•. A value of k• 
greater than vk• may be a more realistic choice, 
because k• -• is related to the time required for 
formation of fracture across the fault width, 
whereas (vk•) -• is related to the time required 
for propagation of fracture along the length of 
the fault. We shall examine later the case in 

which 10 vk• -- kr. Essentially the same result 
as when vk• -- kr will be obtained, except for 
the value of k• corresponding to a source size. 

SCALING L•w OF SEISMIC SPECTRUM 

Under the assumptions described in the pre- 
ceding section, we can express the source factor 
of amplitude spectral density as a function of 
L, % and several nondimensional constants. 
Taking L as a parameter, we shall obtain a 
group of curves of spectral density, each of 
which corresponds to an earthquake of a certain 
size. In order to find which curve corresponds 
to a given earthquake size, we must have a scale 
to measure size. The most convenient scale for 

our purpose is the surface wave magnitude scale, 
defined by Gutenberg and Richter [1936]. This 
magnitude, designated as Ms, is proportional to 
the logarithm of amplitude of teleseismic sur- 
face waves with period of about 20 sec. Since 
at this period the waves are usually well dis- 
persed, we may express the wave train y(t) by 
the stationary phase approximation, as follows: 

y(t) -- w 
I 

'" 42 

where •oo is given by the equation 

(32) 

t - --(d$/dco) .... (33) 
If this approximation is valid, the trace ampli- 
tude of waves with frequency • read directly 
on the record will be proportional to the spec- 
tral density ]Y(•)I. The quantity d•/&o" in 
(32) is the sum of a propagation term and a 
source term. Since the propagation term is pro- 
portional to the travel distance, the source 
term may be neglected at long distances. Thus, 
we may assume that the trace amplitude of 
surface waves with period of 20 sec is equal 
to the amplitude spectral density of waves with 
that period, except for a factor that is inde- 
pendent of the source size. The validity of this 
assumption is confirmed by comparing the ratio 
of trace amplitudes of Love waves with a cer- 
tain period from two aftershocks of the Kern 
County earthquake with the ratio of amplitude 
spectral densities at that period obtained by 
the Fourier analysis method. Both ratios agree 
well. 

Thus, the dependence of amplitude spectral 
density, IA(•)I, on the magnitude M• will be 
such that log IA (o•)] at the period of 20 sec is 
equal to M• plus a constant. In other words, 
two spectrum curves corresponding to two 
earthquake sizes differing by M• -- 1.0 will be 
separated by 1.0 along the ordinate at the 
period of 20 sec, if the curve IA(•)I is drawn 
on a logarithmic scale. Figures 3 and 4 shows 
such groups of curves for the o•-square and 
•-cube models, respectively. 

The curves shown in each of these charts 

have an identical shape. The frequency that 
characterizes the shape of the curve, such as 
k•, is proportional to L -•, and the spectral den- 
sity at • -- k• is proportional to L ', as can be 
found from (30) and (31) under the assump- 
tion of similarity. Therefore, the points cor- 
responding to the characteristic frequency lie 
on a straight line with gradient 3, as shown by 
dashed lines in Figures 3 and 4. As mentioned 
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1 

PERIOD IN SEC 

0.1 0.2 0.5 I 2 5 I0 20 50 I00 200 500 I000 
nitudes. The magnitude of earthquakes studied 
by him covers the range 4.5 to 8. After several 
trials, we choose the absolute value of magni- 
tude that gives the best agreement between 
theory and observation. The values assigned to 
the curves in Figures 3 and 4 are determined 
in this manner, and the corresponding theo- 
retical spectral ratios are shown in Figure 5, 
together with the observed ratios given by 
Berckhemer. 

LOVE WAVES FROM, Two CALIFORNIA SHOCKS 

The applicability of the theoretical curves 
of spectral densities obtained in the preceding 
section is tested by the use of records of Love 
waves from two aftershocks of the Kern 

County, California, earthquake of 1952. The 
epicenters of these two earthquakes are within 
several miles of each other, according to Richter 
[1955], and they show identical first motion 
patterns, according to Bdth and Richter 

PERIOD IN SEC 

0.5 I 2 õ I0 20 50 I00 200 500 I000 5(300 

tO-SQUARE MODEL ' 

/ 

f-- 7.0 
,/ 8.5 

/ , 

FREQUENCY IN C/S 

Fig. 3. I)eper•der•ce of amplitude spectra] den- '"' 
sity of earthquake magnitude M, for the •-square 
model. 

before, the spacing of curves for different earth- 
quake magnitudes is determined by the deft- 
nition of M,. The definition alone, however, 
cannot give the absolute value of magnitude 
corresponding to each curve. 

If we know the absolute value for one of 

the curves, the values for the rest are de- 
termined from the definition of M•. First we 
adopt a trial value of magnitude for one of 
the curves and assign magnitude values to 
other curves according to the definition. Then 
we can find the ratio of spectral densities for 
two different magnitudes as a function of fre- 
quency or period. This ratio is compared with 

03-CUBE MODEL 

M, defined _ 8.o 

, 

/f •--- 7.5 
• . 

6.5 

•,• 'Y' ,.o 
4.5 

2,0 1.0 0.5 02 0.1 0.05 0•2 0.010005 OJ:)02 0.0006 

FREQUENCY IN C/S 

the observed one given by Berckhemer [1962]. 
Fig. 4. Dependence. of amplitude spectral den- 

lets data include six sets of two earthquakes sity on earthquake magnitude M, for the e-cube 
with the same epicenter but of different mag- model. 
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Fig. 5. Comparison of theoretical and observed spectral ratio, plotted against period, for 
pairs of earthquakes having nearly the same epicenter but different size. Observed values are 
reproduced from Berclchemer [1962]. The numbers shown for each pair are the earthquake 
magnitude for the pair. Solid line denotes •-square model; dashed line denotes •-cube model. 

[1958]. The Richter magnitude (M•,; local scale 
for southern California) of one of them is 6.1, 
and that of the other is 5.8. The difference of 

0.3 corresponds to the maximum amplitude 
ratio of 2 on the record of the standard Wood- 

Anderson seismograph. 
The amplitude ratios of Love waves from the 

two earthquakes observed at Weston, Ottawa, 
and Resolute Bay are shown in Figure 6. They 

are obtained by Berckhemer's method, in which 
the ratio is obtained between the corresponding 
peaks of waves by directly reading amplitudes 
on the record. As shown in Figure 7, the cor- 
respondence of peaks and troughs between the 
two earthquakes is excellent, and there is no 
difficulty in obtaining such ratios. Figure 8 
shows the ratio of the amplitude spectral den- 
sity obtained by the Fourier analysis method. 
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o•O 

o7 

o ,so,u'r .,¾ I . ß WESTON | •'Ms 0.85 

_ 

// I •3 model 
I0 20 $0 

PERIOD IN SEC 

Fig. 6. Comparison of theoretical and observed 
spectral ratio for two aftershocks of the Kern 
County, California, earthquake of 1952. Observed 
ratios are obtained from trace amplitude. 

There is no significant difference between the 
, 

results obtained by the two methods, justify- 
ing the simple procedure used by Berckhemer. 

The theoretical curves of spectral density 
ratio for an earthquake pair with magnitudes 
M, around 6.0 which best fit the observations 
are shown in these figures. It is remarkable 
that the observed ratio is about 7 at the period 
of 20 sec; in other words, the difference in M, 
between the two earthquakes is 0.85, about 3 
times larger than the difference in M•, obtained 
by Richter. Our u-square model explains this 
fact satisfactorily, because M•, must have been 
measured on waves with periods of less than 1 
sec, and this model predicts a spectral density 
ratio of about 2 at these periods. On the other 
hand, the u-cube model predicts nearly the 

same spectral density at short periods for the 
two earthquakes and does not explain the ob- 
servation. 

A more general comparison of the local 
magnitude scale M•, and the surface wave mag- 
nitude scale M, is difficult. The maximum ampli- 
tude recorded by the Wood-Anderson seismo- 
graph would not be directly proportional to 
the amplitude spectral density at any fixed 
period, because the signal duration and prevail- 
ing period may change with the earthquake 
source size. The spectral ratio may be nearly 
equal to the maximum amplitude ratio for such 
earthquakes with small difference in magnitude 
as studied in the present section, but the equal- 
ity cannot hold for larger magnitude difference. 
Further, the empirical relation between M•, and 
M,, with which the theoretical relation is to be 
compared, has not yet been stabilized [Richter, 
1958]. 

RELATION BETWEEN ms AND M, 

On the other hand, the relation between the 
magnitude scale mB, defined as the logarithm 
of amplitude of teleseismic body waves, and 
M, has been well established empirically by 
Gutenberg and Richter [1965a]. Further, it is 
well known that the usual record of teleseismic 

body waves, obtained by a standard short-pe- 
riod seismograph such as Benioff's, shows a 
rather narrow spectral band around I c/s. 
Therefore, we may correlate the amplitude of 
body waves with the spectral density at I c/s. 

If our signal is a finite portion of a Gaussian 

o)-• 

b)•./ 

o) 

•1 MINUTE• 

Fig. 7. 

IE S W I N S IN 
RESOLUTE BAY WESTON OTTAWA 

Love waves from the Kern County aftershocks (no. 194 above, no. 141 below; num- 
bers assigned by Richter [1955]) recorded at Ottawa, Resolute, and Weston. 
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Fig. 8. Comparison of theoretical and observed 
spectral ratio for two aftershocks of the Kern 
County, California, earthquake of 1952. Observed 
spectral ratios are obtained by Fourier analysis. 

M, for the to-square and .to-cube model. The 
shaded area indicates the range between the 
above-mentioned two extreme cases of the de- 

pendence of spectral density on signal duration. 
The theoretical curve for the to-cube model does 

not agree with the empirical one given by 
Gutenberg and Richter. On the other hand, the 
agreement is excellent for the to-square model, 
except for smaller magnitudes. Looking at the 
original data from which Gutenberg and Richter 
derived their empirical formula, we find that 
the theoretical curve based on the to-square 
model better explains the observations at small 
magnitudes than the empirical curve as shown 
in Figure 10. This result strongly supports the 
applicability of the scale law of seismic spec- 
trum derived from the to-square model on the 
assumption of similarity. 

noise, the amplitude spectral density will be 
proportional to the square root of the signal 
duration. On the other hand, if the signal is a 
finite portion of a coherent sinusoidal oscilla- 
tion, the spectral density will be proportional 
to the signal duration. We may assume that 
the actual seismic signal has an intermediate 
nature between the above two extremes. Then, 
we may write the spectral density at I e/s as 
follows: 

A(1) = c0nst X A= X t ø"•z'ø (34) 
where A., is the maximum trace amplitude and 
t is the signal duration. me 

According to Gutenberg and Richter [1956b], 8 
log t is related to m• by the empirical formula 

log t = --1.9 -]- 0.4m• (35) 

Inserting this equation into (34), we obtain 7 

log A(1) = cons• -]- (1.2-,• 1.4)ms (36) 
From this equation and the charts of spectral 
density curves given in Figures 3 and 4, we 

6 
can obtain the theoretical relation between m• 
and M, on the basis of the to-square and to-cube 
models. The constant in (36) is determined in 
such a way that m• and M, agree at 6.75, in 
accordance with the Gutenberg-Richter em- 5 
pirical formula 

mB= 6.75 + 0.6a(M,- 6.75) (37) 

Figure 9 shows the relation between rns and 

RELATION BETWEEN FAULT LENGTH AND M, 
FOR THE (o-SQUARE MODEL 

In deriving the scaling law of seismic spec- 
trum we assumed that the characteristic fre- 

quency k• is proportional to L -'. We can check 
this assumption against geological or geodetic 
observations on an earthquake fault of known 
magnitude M,. The value of k• for a given M, 
is found from the theoretical curves for the 
to-square model shown in Figure 3. Then k• -' 
should be proportional to L, if the assumption 
of similarity holds. Figure 11 shows the rela- 

, , , 

•)- squa 

•-cube model • 

'ms = 0,63Ms + 2,5 
/ (Gutenberg-Richter. 1956) 

, 

5 6 7 8 Ms 

Fig. 9. Theoretical relation between ms and 
M, based upon the •-square and •o-cube models, 
as compared with the Gutenberg-Richter empiri- 
cal formula. 



SCALING LAW OF SEISMIC SPECTRUM 1227 

Ms-Ms 

f[ [ I I I [ • I I • [ [ I ] i [ [ 
1.21• 0 f,•)- squa r e mo cl el Ms FROM SURFACE WAVES - 
, 
' [ o• M•Me =0.4(Ms-7) A KERN COUNTY, 195Z 
.Sr•• o o 0 AVERAGES 
.4- • -• o••oo 

2- • • • ••o• o• o 
' o •••• o o •o o o 
0 - • o o o •m• o - oo 

-.4- o o • 
•6- o 

ß •8- o - 

[ t i I [ i I I I I I I I I I I I 
5.0 6.0 7.0 8.o Ms 

Fig. 10. Theoretical relation between ms and M, based upon the •-square model, as com- 
pared with that observed by Gutenberg and Richter [1965a]. 
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Fig. 11. Relation between the length of earth- 
quake fault measured by geological or geodetic 
means and the characteristic time of the earth- 
quake determined from its magnitude on the 
basis of the •-square model. A linear relation 
between them supports the assumption of simi- 
larity. 

tion between To -- 2,rk• -• and L for the earth- 
quake fault given in Toeher's list [Tocher, 
1960]. A linear relationship holds between L 
and To, if earthquakes smaller than magnitude 
6.5 are excluded. In the case of small earth- 

quakes, the surface evidence may not reveal the 
true fault length at the earthquake focus. There 
is also such an ambiguity with the magnitude of 
small earthquakes that the magnitude given in 
Tocher's list may or may not be taken as M,. 
Considering these facts, we may conclude from 
Figure 11 that geological data do not exclude 
the assumption of similarity. 

The characteristic time To for a given M, as 
shown in Figure 11 may seem a little too large. 
It is possible to reduce this value without af- 
fecting significantly the conclusions obtained 
above. If we assume that k• -- 10 vk•. instead 

of k• = vkL, and if we determine a set of spec- 
tral density curves using the data of Berck- 
hemer and others as given above, we find that 
the value of To becomes about one-third that 
given in Figure 11. The agreement between 
theory and observation is as good as that shown 
in Figures 5, 6, and. 8, and we find again that 
the to-square model explains the relation be- 
tween ms and M, and that the to-cube model 
does not. 

EFFICIENCY OF SEISMIC RADIATION 

Let us now examine the efficiency of seismic 
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energy radiation, which must be independent 
of earthquake source size if the similarity con- 
dition holds strictly. We define the efficiency 
as the ratio of the energy radiated in the form 
of seismic waves to the elastic energy released 
by the formation of an earthquake fault. If an 
earthquake is a Starr fracture [Starr, 1928], 
the fault-released elastic energy is proportional 
to DolL. Under the assumption of similarity, 
this energy will be proportional to L 3. If we 
know the energy for a certain value of Ms, we 
can determine the value for any M8 from the 
scaling law given in the preceding section. As- 
suming that log E is 23.7 for M, ---- 7.5 from 
the result of the writer's study on the Niigata 
earthquake [Aki, 1966], we get the released 
strain energy for various M, as shown in Table 
1. The energy radiated in the form of seismic 
waves is evaluated by the Gutenberg-Richter 
formula 

log E = 11.4 + 1.5M, (38) 

and is also shown in Table I together with its 
ratio to the strain energy. The ratio definitely 
increases with decreasing magnitude. Thus, 
starting with the assumption of similarity, we 
have ended by denying it. 

It is, however, not impossible that a further 
refinement of the magnitude-energy relation 
(38) may eventually support the assumption 
of similarity with regard to the radiation ef- 
ficiency, because (38) is based upon several 
simplified assumptions. 

It should be noted here that Bdth and Duda 

[1964], using Berckhemer's result [Berckhemer, 
1962], reached an entirely different conclusion 
on the radiation effciency. They found that the 
efficiency increases with increasing magnitude 
of the earthquake. This difference may be at- 

TABLE 1. Released Strain Energy, Seismic 
Wave Energy and Efficiency of 

Seismic Radiation 

log E,,t log E,,,* Ew[E,t 

8.5 26.7 24.2 0.003 
8.0 25.2 23.4 0.016 
7.5 23.7 22.7 0.10 
7.0 22.5 21.9 0.25 
6.5 21.6 21.2 0.40 

* log E,. = 11.4 q- 1.5 M.. 

tributed to a difference in the assumed source 

model. As mentioned before, the model of 
Berckhemer, if interpreted by dislocation theory, 
is the one in which the dislocation is constant 

and independent of source size, but the disloca- 
tion in our model is proportional to the linear 
dimension of the source. 

DEPARTURE i•ROM SIMILARITY 

As mentioned before, the assumption of simi- 
larity implies a constant stress drop in all 
earthquakes. If the stress drop differs for two 
earthquakes, our scaling law will not apply. If 
the stress drop varies systematically with re- 
spect to such environmental factors as focal 
depth, orientation of fault plane, and crust- 
mantle structure, we may construct different 
scaling laws for different environments. Such 
a study of the seismic spectrum may eventually 
reveal the distribution of stress drop or strength 
of material in the earth's crust and mantle. For 

such a study, however, we shall need more pre- 
cise measurements of spectrum over wider 
ranges of frequency than are now available, as 
well as detailed knowledge of the propagation 
factor of the spectrum. 

Even with the present limited knowledge of 
the propagation factor, however, we may 
demonstrate remarkable differences in stress 

drops between some earthquakes by the use of 
long-period surface waves. The earthquakes to 
be compared here are the Niigata earthquake 
of June 16, 1964, and the Parkfield (California) 
earthquake of June 28, 1966. 

The stress drop in the Niigata earthquake 
was obtained by the following procedure [Aki, 
1966]. The geometry of fault movement was 
determined from the radiation patterns of P 
waves, $ waves [Hirasawa, 1966], and G waves. 
The spectral density of displacement due to G 
waves was estimated for periods of 50 to 200 
see, corrected for dissipation and geometric 
spreading, and compared with the theoretical 
excitation function [Haskell, 1964; Ben-Mena- 
hem and Harkrider, 1964] corresponding to a 
source of that geometry. From this comparison 
we estimated the• product of rigidity g, area $ 
of fault surface, and average dislocation Au, 
which corresponds to the moment Mo of the 
component couple of the equivalent doublet 
[Maruyama, 1963; Burridge and Knopof], 1964; 
Haskell, 1964]. The value of Mo (-- 1• AuS) 
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for the Niigata earthquake was 3 X 10 • dynes 
cm. All the near field evidence (echo-sound- 
ing survey, aftershock epicenters, and Tsunami 
source area) indicated a fault length, L, of 
about 100 kin. The focal depths of the main 
shock and aftershocks indicated a fault width, 
w, of about 20 kin. Assuming that p -- 3.7 X 
10• dynes cm -•, corresponding to a shear ve- 
locity of 3.6 kin/see and density of 2.85 g/cm •, 
we obtained the value of the average dislocation 
as 400 cm by inserting the values of L, w, and 
p into the equation Mo -- 1• Au ß Lw. This 
value agrees well with those observed by echo- 
sounding surveys made just before and after 
the earthquake [Mogi et al., 1965]. Finally, the 
stress drop was estimated as about 125 bars 
with the aid of Starr's theory [Starr, 1928]. 

Now, let us compare the Niigata earthquake 
with the Parkfield earthquake. The Parkfield 
earthquake took place right on the San Andreas 
fault near Cholame and Parkfield. The PDE 

card of the Coast and Geodetic Survey reports 
the epicenter as (35.9øN, 120.5øW), and the 
origin time as 04:26:12.4 GCT, June 28, 1966. 
The magnitude is 5.8, 5.5, and 6• as given by 
the Pasadena, Berkeley, and Palisades stations, 
respectively. According to a personal communi- 
cation from Clarence R. Allen and Stewart W. 

Smith of the California Institute of Technology, 
the near field measurements revealed a strike 

slip fault associated with this earthquake, its 
length being about 38 km and its offset about 
5 cm. 

G2 waves from this earthquake are clearly 
recorded by long-period seismographs at Reso- 
lute (A = 40 ø) and at Ottawa (A = 35ø). The 
peak-to-peak amplitudes on the records at a 
period of 70 see are a little over 1 mm at both 
stations. This corresponds to a spectral density 
of ground displacement of about 0.04 em see at 
that period. 

The G2 waves from the Niigata earthquake 
at, the epicentral distance of 35 ø to 40 ø show a 
spectral density of about 1.6 em see at a period 
of 70 see for a certain radiation azimuth. If the 

Niigata earthquake source is a strike slip fault 
like the Parkfield earthquake, and if we ob- 
served G waves in the direction of maximum 

radiation, we would expect a spectral density of 
about 5 em see at a period of 70 see for G2 
waves at A -- 35 ø • 40 ø. This value is about 

125 times as large as that observed from the 

Parkfield earthquake. Considering that the ef- 
feet of finite size was significant for the Niigata 
earthquake (about a factor of % at a period 
of 70 see) but probably not for the Parkfield 
earthquake, we estimate the ratio of the source 
moment Mo for the Parkfield earthquake to that 
for the Niigata earthquake as 1/250. Thus, we 
get a moment value of about 1 x 10 • dynes 
for the Parkfield earthquake. 

Using the same rigidity value as for the 
Niigata earthquake and the observed values of 
fault length and dislocation mentioned before, 
we get a fault width of about 13 km from the 
above value of moment. This value of fault 

width gives us an extremely low estimate of 
strain release. Since Knopoff's fracture model 
is more appropriate for a strike slip than 
Starr's, we estimate the strain release by the 
formula e -- Au/2w [Knopo#, 1958]. We get 
a value of • of 2 X 10 -6 and a corresponding 
stress drop of about 0.7 bar, which is indeed a 
remarkably low value. Even if there is an order 
of magnitude error in estimating the value of 
moment, the stress drop is still several bars. 

As mentioned before, if the stress drop. is 
different between two earthquakes, the scaling 
law derived in the present paper will not apply 
to them. We found some indication of violation 

of the scaling law when we compared the 
Parkfield earthquake with one of the aftershocks 
of the Kern County earthquake. 

The magnitude of the Parkfield earthquake 
given by local stations is 5.5 (Berkeley) ,• 5.8 
(Pasadena). The surface wave magnitude Ms 
of this earthquake, calculated from the Love 
wave amplitude at a period of 20 see recorded 
at Ottawa, is 6•. This value agrees with the 
magnitude given by the Palisades station. 

On the other hand, the magnitude of num- 
ber 141 aftershock [Richter, 1955] of the Kern 
County earthquake is 6.1. Ms for this earth- 
quake, calculated also from Love wave ampli- 
tude at a period of 20 see recorded at Ottawa, 
is 6.2. 

Since the variability of seismic amplitudes is 
very large, it is dangerous to draw any conclu- 
sions from measurements at a few stations. 

However, the magnitude values above suggest 
that the spectral density for the Parkfield 
earthquake may be greater than that for the 
Kern County aftershock at long periods, and 
smaller at short periods. If so, the two spec- 
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trum curves must cross each other, violating the 
scaling law. This result is expected if the stress 
drop in the Parkfield earthquake is lower than 
that in the Kern County aftershock. The reduc- 
tion of stress drop is equivalent to the reduction 
of Do in (30), and it will shift the spectrum 
curves in Figure 3 downward parallel to the 
ordinate, causing an intersection with the origi- 
nal curve in the manner described above. 

As we have seen above, there is a possibility 
that the stress drop in an earthquake may vary 
greatly according to its geological environment. 
We shall probably have to assign different scal- 
ing laws to different environments. This implies 
that a single parameter, such as magnitude, 
cannot describe an earthquake even as a rough 
measure. The measurement of seismic spectral 
density rather than amplitude will become in- 
creasingly important. To understand the ob- 
served spectrum in terms of the physics of the 
earthquake source, however, we shall have to 
know more about the effect of the propagation 
media on the spectrum than we do now. 
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