Mechanics of Earthquakes and Faulting

Lecture 6, 11 Feb 2021

www.geosc.psu.edu/Courses/Geosc508

Importance of volume change and dilatancy rate (rate of volume strain with shear strain)
some basic elasticity

Friction theory

Amonton’ slaws

Chemical effects

Hydrolytic weakening

Basic observations of: time-dependent static friction
velocity-dependent sliding friction

Adhesive theory of friction

Hertian contact

ploughing

Read Rabinowicz, 1951 & 1956 (we will discuss these next week on Feb 11)
Read Chapter 2 of Scholz (and look ahead at other chapters)



Fluids: Consider the affects on shear strength

*Mechanical Effects
‘Chemical Effects

Mechanical Effects: Effective Stress Law
Ocffective = On - Pp

/I __
aij = 045 — Ppéij O, — “— O,

0;5 =139 =
0ij =052 # 7
Leopold Kronecker (1823—-1891)

Rock properties depend on effective stress: Strength, porosity, permeability,
Vp, Vs, efc.



U',-- — O',,:j — Pp(szj Ocffective = On - PP

Exercise: Follow through the implications of Kronecker’s delta to see
that pore pressure only influences normal stresses and not shear
stresses. Hint: see the equations for stress transformation that led to

Mohr’ s circle.
(a1 + 02) (cr1 - 02)

O = + COS 20
2 2

r=2 ;02 sin(2a)




Void space filled with a fluid at
pressure Pp

But what if Arz A?

Two surfaces
in contact

Fluids play a role by opposing the
normal stress



Mechanical Effects: Effective Stress Law

, — . . — . .

For brittle conditions,

Ar/ A ~0.1
Two surfaces
agj =04 — Pp 57:, In contact
(1- 4 7
o= — —
A T=C0C+ /1:2'0',

Exercise: Consider how a change in applied stress would differ from a change in Pp
in terms of its effect on Coulomb shear strength. Take a = 0.9



Effective Stress Law Coupled Effects

Applied Stress

4 N

Pore <:> Strength,
Pressure Stability
Two surfaces
in contact

o

Dilatancy: Shear driven volume change

Exercise: Make the dilatancy demo described by Mead (1925) on pages 687-688.
You canuse a balllon, but a plastic bottle with a tube works better. Bring to class
to show us. Feel free to work in groups of two.



Effective Stress Law Coupled Effects

Applied Stress

Pore Strength
gin,
Pressure <:::> Stability

Two surfaces

in contact
Dilatancy
(0]
) Shear
Rate A ,
Pore Fluid, Pp

Pore Fluid, Pp l
Pp1,¢1,7'1 Pp27¢277-2



Dilatancy: ¢1 ?é ¢2

Volumetric Strain: ., _ (Vo — V1)

Assume no change in V

solid volume
db

Dilatancy Rate: /B —

dry

) Shear
Rate A ,
Pore Fluid, Pp

Pore Fluid, Pp l P ¢
Ppy, ¢1, 71 p2s P2, T2




Dilatancy: ¢ £ ¢, Pp, # P,, Undrained loading

Volumetric Strain: (Vo — V1)
df =
Assume no change in V
solid volume
do
Dilatancy Rate: = —
dry

Dilatancy Hardening if d@ > Vf or Vf < ,3

) Shear
Rate A :
— = = m
<:::> Pore Fluid, Pp

Pore Fluid, Pp - P ¢
Py, 01,71 p2> P25 72




Dilatancy Hardening if : Vf < ,B

/ — ¢ ¢ — . .
;5 = Oij PP(SU

T =C + p;o’

Shear

) _
Rate :
<:::> Pore Fluid, Pp
<=

Pp17¢177-1 Pp2’¢2’7-2

Pore Fluid, Pp



Dilatancy Weakening can occur if: 79 <« 0 and |d9 | > Vf

This is shear driven compaction

, —— . . p— . .
;5 = T4 Pp(sm

T =C + p;o’
) Shear
Rate A :
Y V;
——
Pore Fluid, Pp

Pore Fqud Pp -
01, T Ppy, 92, T
p17 1,71 P2’ 74



+ Elasticity:
o,= 2ug, + Ao,0
where A and u are Lame’ s constants, 6 is Kronecher’ s delta (§;; = 1
fori= jand §; = 0 forizj) and 0 is the volumetric strain.
Lame’ s constants are (can be related to) Elastic moduli

Shear Modulus, Bulk Modulus, Young’ s Modulus

The shear modulus, G or u, is the shear
deformation (normalized by the initial length)

E
w=5—==G . .
21 +v) for a given change in shear stress
G = dv/(dx/L) = dv/dy

— 5 dX ——

l drt

é

L LT




—> C <

€ = u/L, linear strain

o= E €, where E is Young’s Modulus.

Note that Modulus has units of stress
(Pa)

Young s Modulus is important in many
problems.

*Think of it as a generalized (i.e.,
complex) spring constant

*As in Hooke’ s law, which relates
force and displacement through a
spring constant, the modulus
relates stress and strain.



—> C <
e

There are nine components
of the strain tensor
8XX’ SX}” 8XZ

Evxs Eyys €

yxo Tyyr Tyz

8ZX’ 8Z}/’ 8ZZ

Poisson’ s ratio v is an elastic
parameter that describes the
lateral expansion due to an axial
deformation:

V = -€,,/ €y

FYI: Poisson’ s ratio is 0.5 for water
and 0.25 for a typical granite.



2
EILL K is the bulk modulus. The bulk modulus is the
change in volume (normalized by the initial

volume) for a given change in hydrostatic
pressure: K = dP/(dv/V;) = dP/ d6

K = A+

Initial After

* Compression
d
A

Vinitial dV = Véina = Vinitial

vfi nal



+ Elasticity:

o,= 2ug, + Ao,0

where A and u are Lame’ s constants, 6 is Kronecher’ s delta (§;; = 1
fori= jand §; = 0 forizj) and 0 is the volumetric strain.

Lame’ s constants are (can be related to) Elastic moduli

vE
(1 +o)(1 - 20) A can be related to E and v

A =

B The shear modulus, G or yu, is the shear
u = =G deformation (normalized by the initial length)
2(1 "'U) for a given change in shear stress
G = dv/(dx/L) = dv/dy

2 K is the bulk modulus. The bulk modulus is the
K = A+ gM change in volume (normalized by the initial

volume) for a given change in hydrostatic
pressure: K = dP/(dv/V) =dP/d6



Friction

Galileo
Amonton
Coulomb
Others

These are generally called laws but they are
not Laws. They are or historical interest

Amontons' First Law: The force of friction
1s independent of the apparent area of
contact.

Amontons' Second Law:

The force of friction is directly proportional
to the applied load.

Coulomb's Law of Friction: Kinetic friction
1s independent of the sliding velocity.




Base Friction vs. 2nd order variations
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Amonton’ s Laws (1699) (Both apply to base friction, p,)

Ist Friction force independent of the size of surface contact dimension A

To 7 To (A) Ho 7é Ho (A)
2nd Friction force is proportional to normal load
7'0 p— IJ’OO- A

Fr
P

Contact area A




Amonton’ s Laws (1699)

Friction force is the same for objects small and large as long as is o ~ equal

l, ~ 1/3 regardless of surface or material for a wide range of metals and technological
materials, excluding lubricated surfaces and modern polymers such as teflon

Why does it hold? Friction is a contact problem. Therefore base friction is
primarily a surface property and not a material property
(we’ Il have to relax this a bit when we talk about 2nd order
variations in friction

Friction ~ independent of surface roughness for low
normal loads and unmated surfaces

Two surfaces Asperities

in contact
mated joint



Adhesive Theory of Friction

Ist Friction force independent of the size of surface contact dimension A

Why does it hold?
Solution to Amonton’ s Problem: Asperities and contact junctions

SO
o0 DD Q
o ° O
QS O ~\.contact junction of dimension A,r = Eai
o o a;
O o
\ A, # A

Nominal contact area A

Real area of contact ~ 10% A for unmated rough surfaces --doesn’ + apply
for very light loads, mirror-smooth surfaces or lubricated surfaces

But we still have the problem of A,. v o
and y, ~ independent of material

Why is this a problem?

Two surfaces Asperities
in contact



Adhesive Theory of Friction

But we still have the problem of A, v o
N T and g, ~ independent of material

Why is this a problem?

e
welded contact junction

consider a hemispherical contact against a flat, under a shear load

Hertzian contact predicts A, o o3

ah, hmmm, but what about Coulomb or Amonton? They said that ‘friction force’

scales linearly with normal stress T =T, + LW O



Adhesive Theory of Friction

But we still have the problem of A, v o
N T and g, ~ independent of material

Why is this a problem?

A

welded contact junction
consider a hemispherical contact against a flat, under a shear load

(Bowden & Tabor, 1950)

Two assumptions:

1) Yielding at asperities is just sufficient to support normal load

o=pA, where, p is penetration hardness

2) Slip involves shearing of adhesive contacts and/or asperities

T=s5A, where, s is shear strength

combing these equations shows why , ~ independent of material

Lo = T _ SA; __ f friction is the ratio of two material properties
0 = = =




Adhesive Theory of Friction (Bowden & Tabor, 1950)

sA, s

- pA, p

—_— T

-
Ho = —
o)

A

friction is the ratio of two material properties

welded contact junction

Generally see that p ~ 3 o, compressive yield strength and s ~ o, /2
This gives g, = 1/6 --but recall that observation is that y, ~ 1/3.

--difference due to unaccounted effects, such as ploughing, wear and surface
production, interlocking, dilational work, etc.

But we still have the problem of linearity between t,and o

2
Hertzian contact predicts A, o 03

but, this is dealt with by realistic descriptions of surface roughness: asperities have
asperities on them... Archard (1957), Greenwood and Williamson (1966)



Friction: Observations & Geophysical Experimental Studies

See Scholz Fig 2.5 for common experimental configurations

Rock Mechanics Lab Studies

Experiments designed to investigate mechanisms and processes, not scale model experiments
Application of friction/fracture studies to earthquakes/fault behavior
« Scaling problem.
Lab: cm-sized samples,  Field: earthquake source dimensions 10’ s o 100" s km
Friction is scale invariant to 1st order (Amonton) --i.e. i is a dimensionless constant. But will this
extend to 2nd order characteristics of friction that control slip stability

Byerlee’s Law (Byerlee, 1967, 1978)
t =0.85 ¢, for o, < 200 MPa

Base Friction is: t =50 + 0.6 o, for c, > 200 MPa
~ independent of rock type and normal stress

~ the same for bare, ground surfaces and gouge This applies (only) to ground surfaces,

primarily Westerly granite

For granular materials, powders, and
fault gouge: < =0.6 o,

Note that Byerlee’s law is just Coulomb Failure. It’s simply a statement about
brittle (pressure sensitive) deformation and failure.



Byerlee’s Law (Byerlee, 1967, 1978) MAXIMUM  FRICTION
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Byerlees Law for Rock Friction (Coulombs Criterion)

SHEAR STRESS, T (BARS x10°)
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Shear Stress (MPa)

Friction of Fault Zones
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Friction: 2nd order variations, slick-slip and stability of sliding

Rabinowicz 1951, 1956,. 1958
Static vs. dynamic friction & state dependence H = Hs (3 — 0) } Classical view

p=pq (s>0)
Rabinowicz recognized that finite slip was
necessary to achieve fully dynamic slip

Static-Dynamic Friction with

critical slip

o —— p=ps (8<8q)

S 1
§ p=pq (8> 5q)
: !
Sy Sq is the critical slip distance

Slip

Rabinowicz experiments showed state, memory effects and that 1y
varied with slip velocity.



Friction: 2nd order variations, slick-slip and stability of sliding

Rabinowicz’ s work solved a major problem with friction theory: he introduced
a way to deal with the singularity in going from p to yy

Slip Weakening Friction Law

0 'u,(gj) = g — %AM (forL>x>0)

“s_\_
; Md

<L~ Palmer and Rice, 1973; Ide, 1972; Rice, 1980
Slip

£ Md(v) /L(CU) — Ug — A,U, (forx > L)

\4

For solid surfaces in contact (without wear materials), the slip distance L represents the
slip necessary to break down adhesive contact junctions formed during ‘static’ contact.

The slip weakening distance is also known as the critical slip or the breakdown slip

This slip distance helps with the stress singularity at propagating crack tips, because the
stress concentration is smeared out over the region with slip < L.



Friction: 2nd order variations, slick-slip and stability of sliding

Slip Weakening Friction Law
i
1 /L(CE) = g — —A’u (for L>x>0)
Ms—x L
T Md(") 'u(aj) = Ug — A/-L (forx > L)
> —
Sli

P Critical friction distance
represents slip necessary
Adhesive Theory of Friction to erase existing contact

For a surface with a

= E 0000 | fommenstems
' q

proportional to the average
3 O contact dimension.

o o°

Critical friction distance scales with
surface roughness



