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• Importance of volume change and dilatancy rate (rate of volume strain with shear strain) 
• some basic elasticity
• Friction theory
• Amonton’s laws
• Chemical effects
• Hydrolytic weakening
• Basic observations of: time-dependent static friction
• velocity-dependent sliding friction
• Adhesive theory of friction
• Hertian contact
• ploughing

• Read Rabinowicz, 1951 & 1956 (we will discuss these next week on Feb 11)
• Read Chapter 2 of Scholz (and look ahead at other chapters) 



σeffective =  σn - PpMechanical Effects:  Effective Stress Law
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Rock properties depend on effective stress: Strength, porosity, permeability, 
Vp, Vs, etc.

Leopold Kronecker (1823–1891)

Fluids: Consider the affects on shear strength

•Mechanical Effects
•Chemical Effects



σeffective =  σn - Pp
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Exercise: Follow through the implications of Kronecker’s delta to see 
that pore pressure only influences normal stresses and not shear 
stresses.  Hint: see the equations for stress transformation that led to 
Mohr’s circle.
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Fluids play a role by opposing the 
normal stress

Void space filled with a fluid at 
pressure Pp

But what if Ar ≠ A ?
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Mechanical Effects:  Effective Stress Law

For brittle conditions,  
Ar / A  ~ 0.1

σ

Exercise: Consider how a change in applied stress would differ from a change in Pp 
in terms of its effect on Coulomb shear strength. Take α = 0.9
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Effective Stress Law

σ

Coupled Effects

Applied Stress

Pore 
Pressure

Strength, 
Stability

Exercise: Make the dilatancy demo described by Mead (1925) on pages 687-688.  
You can use a balllon, but a plastic bottle with a tube works better.  Bring to class 
to show us.  Feel free to work in groups of two.

Dilatancy: Shear driven volume change
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Dilatancy: 

Pore Fluid, PpPore Fluid, Pp

Volumetric Strain:
Assume no change in 

solid volume

Dilatancy Rate: 

Shear 
Rate



Dilatancy: 

Pore Fluid, PpPore Fluid, Pp

Volumetric Strain:
Assume no change in 

solid volume

Dilatancy Rate: 

Shear 
Rate

Dilatancy Hardening if : or

Undrained loading



Pore Fluid, PpPore Fluid, Pp

Shear 
Rate

Dilatancy Hardening if : 



Pore Fluid, PpPore Fluid, Pp

Shear 
Rate

Dilatancy Weakening can occur if: 

This is shear driven compaction



• Elasticity:  

where λ and µ are Lame’s constants, δ is Kronecher’s delta (δij = 1 
for i = j and δij = 0 for i≠j) and θ is the volumetric strain.

Lame’s constants are (can be related to) Elastic moduli
Shear Modulus, Bulk Modulus, Young’s Modulus
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The shear modulus, G or µ, is the shear 
deformation (normalized by the initial length) 
for a given change in shear stress
G = dτ/(dx/L) = dτ/dγ
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ε = u/L, linear strain

σ = E ε, where E is Young’s Modulus.

Note that Modulus has units of stress 
(Pa)

Young’s Modulus is important in many 
problems.  

•Think of it as a generalized (i.e., 
complex) spring constant

•As in Hooke’s law, which relates 
force and displacement through a 
spring constant, the modulus 
relates stress and strain.
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Poisson’s ratio ν is an elastic 
parameter that describes the 
lateral expansion due to an axial 
deformation:

ν = -εzz/εxx

FYI: Poisson’s ratio is 0.5 for water 
and 0.25 for a typical granite.

There are nine components 
of the strain tensor

εxx, εxy, εxz

εyx, εyy, εyz

εzx, εzy, εzz
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K  =  λ +
2
3 µ K is the bulk modulus. The bulk modulus is the 

change in volume (normalized by the initial 
volume) for a given change in hydrostatic 
pressure: K = dP/(dv/Vi)  = dP/ dθ

After
Compression

Vinitial

Vfinal

dV = Vfinal - Vinitial

Initial



• Elasticity:  

where λ and µ are Lame’s constants, δ is Kronecher’s delta (δij = 1 
for i = j and δij = 0 for i≠j) and θ is the volumetric strain.

Lame’s constants are (can be related to) Elastic moduli
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The shear modulus, G or µ, is the shear 
deformation (normalized by the initial length) 
for a given change in shear stress
G = dτ/(dx/L) = dτ/dγ

K is the bulk modulus. The bulk modulus is the 
change in volume (normalized by the initial 
volume) for a given change in hydrostatic 
pressure: K = dP/(dv/V) =dP/dθ
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Galileo
Amonton
Coulomb
Others

Friction

• Amontons' First Law: The force of friction 
is independent of the apparent area of 
contact.

• Amontons' Second Law:
• The force of friction is directly proportional 

to the applied load.

• Coulomb's Law of Friction: Kinetic friction 
is independent of the sliding velocity.

These are generally called laws but they are 
not Laws. They are or historical interest



Base Friction vs. 2nd order variations
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(Frye and Marone, GRL 2002)

Base Friction, µo

µo

For metals: µo ~ 1/3

For rocks: µo ~ 2/3



Amonton’s Laws (1699) (Both apply to base friction, µo)

1st  Friction force independent of the size of surface contact dimension A

Fn

Fs
Contact area A

2nd  Friction force is proportional to normal load 

σ

τ



Amonton’s Laws (1699)

Friction force is the same for objects small and large as long as is σ ~ equal

µo ~ 1/3 regardless of surface or material for a wide range of metals and technological 
materials, excluding lubricated surfaces and modern polymers such as teflon

Why does it hold? Friction is a contact problem. Therefore base friction is 
primarily a surface property and not a material property 
(we’ll have to relax this a bit when we talk about 2nd order 
variations in friction

Asperities

Friction ~ independent of surface roughness for low 
normal loads and unmated surfaces

mated joint



Adhesive Theory of Friction

Why does it hold?
Solution to Amonton’s Problem: Asperities and contact junctions

Asperities

1st  Friction force independent of the size of surface contact dimension A

contact junction of dimension

Nominal contact area A

Real area of contact ~ 10% A for unmated rough surfaces --doesn’t apply 
for very light loads, mirror-smooth surfaces or lubricated surfaces

But we still have the problem of
and µo ~ independent of material

Why is this a problem?



But we still have the problem of
and µo ~ independent of material

Why is this a problem?

welded contact junction

consider a hemispherical contact against a flat, under a shear load

Adhesive Theory of Friction

Hertzian contact predicts 

ah, hmmm, but what about Coulomb or Amonton? They said that ‘friction force’ 

scales linearly with normal stress  τ = το + µ σ



But we still have the problem of
and µo ~ independent of material

Why is this a problem?

welded contact junction

consider a hemispherical contact against a flat, under a shear load

(Bowden & Tabor, 1950)

Two assumptions:
1) Yielding at asperities is just sufficient to support normal load

where, p is penetration hardness

2) Slip involves shearing of adhesive contacts and/or asperities
where, s is shear strength

combing these equations shows why µo ~ independent of material

friction is the ratio of two material properties

Adhesive Theory of Friction



But we still have the problem of linearity between τo and σ

welded contact junction

(Bowden & Tabor, 1950)

friction is the ratio of two material properties

Generally see that p ~ 3 σy compressive yield strength and s ~ σy /2
This gives µo = 1/6   --but recall that observation is that µo ~ 1/3.

--difference due to unaccounted effects, such as ploughing, wear and surface 
production, interlocking, dilational work, etc.

Hertzian contact predicts 

but, this is dealt with by realistic descriptions of surface roughness: asperities have 
asperities on them….   Archard (1957), Greenwood and Williamson (1966)

Adhesive Theory of Friction



Friction: Observations & Geophysical Experimental Studies

See Scholz Fig 2.5 for common experimental configurations

Rock Mechanics Lab Studies
• Experiments designed to investigate mechanisms and processes, not scale model experiments
• Application of friction/fracture studies to earthquakes/fault behavior
• Scaling problem.        

Lab:  cm-sized samples,       Field: earthquake source dimensions 10’s to 100’s km
• Friction is scale invariant to 1st order (Amonton) --i.e. µ is a dimensionless constant. But will this 

extend to 2nd order characteristics of friction that control slip stability

Base Friction is: 
~ independent of rock type and normal stress
~ the same for bare, ground surfaces and gouge

Byerlee’s Law (Byerlee, 1967, 1978) 
τ = 0.85 σn for σn < 200 MPa
τ  = 50 + 0.6 σn for σn > 200 MPa

This applies (only) to ground surfaces, 
primarily Westerly granite

For granular materials, powders, and 
fault gouge:    τ = 0.6 σn

Note that Byerlee’s law is just Coulomb Failure.  It’s simply a statement about 
brittle (pressure sensitive) deformation and failure.



Byerlee’s Law (Byerlee, 1967, 1978) 

τ = 0.85 σn for σn < 200 MPa
τ  = 50 + 0.6 σn for σn > 200 MPa

For granular materials, powders, and 
fault gouge:    τ = 0.6 σn



Byerlee’s Law for Rock Friction  (Coulomb’s Criterion)

µ = 0.6

Byerlee, 1978 



Friction of Fault Zones Penn State Lab, ~ 2000 samples



Friction: 2nd order variations, slick-slip and stability of sliding

Rabinowicz 1951, 1956,. 1958
Static vs. dynamic friction & state dependence

Slip

µs

µd
sd

Static-Dynamic Friction with 
critical slip

Rabinowicz recognized that finite slip was 
necessary to achieve fully dynamic slip

Classical view

sd is the critical slip distance

Rabinowicz experiments showed state, memory effects and that µd
varied with slip velocity.



Friction: 2nd order variations, slick-slip and stability of sliding

Slip

µs

µd
L

Slip Weakening Friction Law

(v)µd≠

Rabinowicz’s work solved a major problem with friction theory: he introduced 
a way to deal with the singularity in going from µs to µd

(for L > x > 0)

(for x > L)

Palmer and Rice, 1973; Ide, 1972; Rice, 1980 

For solid surfaces in contact (without wear materials), the slip distance L represents the 
slip necessary to break down adhesive contact junctions formed during ‘static’ contact.

The slip weakening distance is also known as the critical slip or the breakdown slip

This slip distance helps with the stress singularity at propagating crack tips, because the 
stress concentration is smeared out over the region with slip < L.



Friction: 2nd order variations, slick-slip and stability of sliding

Slip

µs

µd
L

Slip Weakening Friction Law

(v)µd≠

(for L > x > 0)

(for x > L)

Critical friction distance 
represents slip necessary 
to erase existing contactAdhesive Theory of Friction

For a surface with a 
distribution of contact 
junction sizes, L, will be 
proportional to the average 
contact dimension. 

Critical friction distance scales with 
surface roughness


