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Imagine that you’re in a restaurant with some friends. The owner stops by to say hello and after hearing
that you’re a geophysicist she challenges you to write down the Shear and Normal Stress on a Plane of
Arbitrary Orientation given the principal stresses.

She calls the waiter over and he gives you a couple extra napkins and a pencil and says, don’t worry
about the third dimension because that’s always in the fault plane for simple (Andersonian) faulting. So
you know that you can just use two principal stresses. The maximum and minimum stress. Go ahead and
call them σ1 and σ2
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Ok, get to work! You’ve got to finish before he brings the drinks 

Sketch in plane P



C.  A.  Coulomb  (1736-1806)



Brittle  Failure  and  Time  dependence  of  
“static” friction



Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal Stresses:

Mohr Circle.
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But, note that in general: µ ≠ µ' and φ ≠ φ'
That is, the coefficient of sliding friction is not necessarily 
equal to the coefficient of internal friction.



What is the longest block that can be slid in frictional contact?
Fracture will occur first for very long blocks
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What is the longest block that can be slid in frictional contact?
Fracture will occur first for very long blocks
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The Coulomb and Frictional failure criteria may be 
considered together, on a Mohr diagram
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τ = τ o + µ’ σn

This shows that pre-existing planes of weakness, of 
orientations from φ1 to φ2, will fail by frictional slip prior 
to a new fracture forming at orientation φ3.

φ3



What about under compression?
•Pressure-dependent brittle failure
•Failure stress is higher under higher normal stress.

Macroscopic Failure Criteria:  Faulting, Fracture, Friction

These are not in general rheologic laws, but rather relationships 
between principal stresses (or applied stresses) at failure.

σ3 σ3

In tension, we have failure at σ3 = -To, where To is the tensile 
strength.  

How does tensile strength depend on pressure, applied stresses, 
temperature?

Handin, J. (1969), On the Coulomb-Mohr failure criterion, JGR. 74, 5343-5348



Ramsey & Chester: Hybrid fracture and the 
transition from extension fracture to shear 
fracture, Nature 428, 63-66 (4 March 2004)

Griffith, Modified Griffith: to explain curvature 
and transitional (hydrid) fractures. Based on stress 
concentrations at crack tips.



Rheology and Deformation. Definitions.

The terms brittle and ductile can be defined in a number of ways. One def. is given by
the Coulomb Failure Criterion.
Another important operational definition involves the stress-strain characteristics and
the dependence of strength on mean or normal stress.

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

Brittle and Ductile (or plastic) deformation can be distinguished on the
basis of whether the yield strength depends on pressure (mean stress or
normal stress).

Why would yield strength depend on mean stress?



Rheology and Deformation. Definitions.

The term ‘brittle’ is also used to describe materials that break after very little strain.
These materials have low fracture toughness.

Fracture toughness describes a materials ability to deform without breaking.
•Brittle materials (like glass or ceramics) have low toughness.
•Plastics have high toughness

Shear or 
differential 

stress,
σ

Strain, ε,<1%



What causes the pressure sensitivity of brittle deformation?

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

• Volume change. Brittle deformation involves volume change –dilatancy or compaction.
• ‘Dilation’ means volume increase. Dilatancy describes a shear induced volume

increase. The term was introduced to describe deformation of granular materials –
but dilation also occurs in solid brittle materials via the propagation of cracks.

• Work is done to increase volume against the mean stress during brittle deformation,
thus the pressure sensitivity of brittle deformation.

• Ductile deformation occurs without macroscopic volume change, due to the action of
dislocations. Dislocation motion allows strain accommodation.



• Brittle deformation and dilatancy

Axial Strain,   Volumetric Strain

Differential 
Stress,
(σ1 - Pc)

Fracture

Dilatancy:  cracks forming and opening

Hardening, Modulus Increase:  
cracks closing

Brace, Paulding & Scholz, 1966; Scholz 1968.



Strain

Differential 
Stress,
(σ1 - Pc)

Pc1
Pc2

Pc5 > Pc4 
…

Brittle Failure:  If we draw the stress-strain-failure curves for a range of 
confining pressures, we’ll get a range of yield strengths, showing that   σy is 
proportional to Pc.

Stress-strain-failure curves

With increasing confining 
pressure there is a transition 
from localized to more 
broadly distributed 
deformation.

These styles can be loosely 
related to Brittle and 
Ductile deformation, 
respectively.  
Brittle refers to pressure 
sensitive deformation
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•Griffith proposed that all materials contain 
preexisting microcracks, and that stress will 
concentrate at the tips of the microcracks

•The cracks with the largest elliptical ratios 
will have the highest stress, and this may be 
locally sufficient to cause bonds to rupture 

• As the bonds break, the ellipticity increases, 
and so does the stress concentration

• The microcrack begins to propagate, and 
becomes a real crack

• Today, microcracks and other flaws, such as 
pores or grain boundary defects, are known as 
Griffith defects in his honor



Bond separation and specific surface energy.

•Fracture involves creation of new surface area.
•The specific surface energy is the energy per unit area required to break bonds.

Two surfaces are created by separating the material by a distance λ/2 and the work
per area is given by stress times displacement.

This yields the estimate:

The surface energy is a fundamental physical quantity and we will return to it when we
talk about the energy balance for crack propagation and the comparison of laboratory
and seismic estimates of G, the fracture energy.
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Griffith posed the problem of 
crack propagation at a 
fundamental level, on the 
basis of thermodynamics.

He considered the total 
energy of the system, 
including the region at the 
crack tip and just in front of 
a propagating crack.

Crack mechanics and crack propagation

Total energy of the system is U and the crack length is 2c, then 
the (cracked) solid is at equilibrium when dU/dc = 0

•Work to extend the crack is W
•Change in internal strain energy is Ue
•Energy to create surface area is Us

Then: U = (-W + Ue) + Us



Crack mechanics and crack propagation, Griffith theory

•Work to extend the crack is W
•Change in internal strain energy is Ue
•Energy to creation surface area is Us

Then: U = (-W + Ue) + Us

•Mechanical energy (-W + Ue) decreases w/ crack 
extension.  This is the energy supply during crack 
extension.  

•(-W + Ue) may come from the boundary or from local 
strain energy.

•The decrease in mechanical energy is balanced by an
increase in surface energy (Us is related to specific 
surface energy, γ, discussed above.

•The crack will extend if dU/dc < 0



Energy balance for crack propagation, Griffith theory

U = (-W + Ue) + Us
•Crack will extend if dU/dc < 0 
•System is at equilibrium if dU/dc = 0

Consider a rod of length y, modulus E and unit cross section loaded in tension:

• Internal energy is: Ue = yσ2/2E, for uniform tensile stress σ
• For a crack of length 2c, internal strain energy will increase by πc2σ2/E

• Introduction of the crack means that the rod becomes more compliant:
•The effective modulus is then: E’ = yE/(y+2πc2)

• The work to introduce the crack is: W = σy(σ/E’ - σ/E) = 2πc2σ2/E
• Change in surface energy is Us = 4cγ

• Thus: U = -πc2σ2/E + 4cγ,
• At equilibrium: the critical stress for crack propagation (failure stress) is: 
σf = (2Eγ/πc)1/2



U = (-W + Ue) + Us
•Crack will extend if dU/dc < 0 
•System is at equilibrium if dU/dc = 0

• The critical stress for crack propagation (failure stress): σf = (4Eγ/πc)1/2

Taking σ∞ of 10 MPa, E= 10 GPa and γ of 4 x 10-2 J/m2, gives a crack half 
length c of 1 micron.  
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U = (-W + Ue) + Us
•Crack will extend if dU/dc < 0 
•System is at equilibrium if dU/dc = 0



Fracture Mechanics and
Stress intensity factors for each mode

KI, KII, KIII

Linear Elastic Fracture Mechanics
•Frictionless cracks
•Planar, perfectly sharp (mathematical) cuts

Crack tip stress field written in a generalized form
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Fracture Mechanics and
Stress intensity factors for each mode

KI, KII, KIII

Linear Elastic Fracture Mechanics
•Frictionless cracks
•Planar, perfectly sharp (mathematical) cuts
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Crack tip stress field written in a generalized form



For uniform remote loading of a 
crack of length 2c:
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Static vs. dynamic fracture mechanics, relativistic effects
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σ22

σ23

σ21

rr’G is Energy flow to crack tip per unit new crack area 
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Gcrit is a material property --the “fracture energy”

Gcrit = Kc
2/ E = 2γ, where Kc is the critical stress intensity factor 

(also known as the fracture toughness). 



Stress field is singular at the crack tip.
•because we assumed perfectly sharp crack
•but real materials cannot support infinite stress 
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Process zone (Irwin) to account for non-linear 
zone of plastic flow and cracking

•Size of this zone will depend upon crack 
velocity, material properties and crack 
geometry

•Energy dissipation in the crack tip region 
helps to limit the stresses there (why?)
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Strain

Differential 
Stress,
(σ1 - Pc)

Pc1
Pc2

Pc5 > Pc4 
…

Brittle Failure:  If we draw the stress-strain-failure curves for a range of 
confining pressures, we’ll get a range of yield strengths, showing that   σy is 
proportional to Pc.

Stress-strain-failure curves

With increasing confining 
pressure there is a transition 
from localized to more 
broadly distributed 
deformation.

These styles can be loosely 
related to Brittle and 
Ductile deformation, 
respectively.  
Brittle refers to pressure 
sensitive deformation



Shear Fracture Energy from Postfailure Behavior

Axial strain

Differential 
Stress,
(σ1 - Pc)

Fracture

Dilatancy:  cracks forming and opening

Hardening, Modulus Increase:  
cracks closing

Brace, Paulding & Scholz, 1966; Scholz 1968.



Shear Fracture Energy from Postfailure Behavior

Strain

(σ
1
-P

c)
Fracture

Lockner et al., 1991



Shear Fracture Energy from Postfailure Behavior

Wong, 1982, found that shear stress dropped ~ 0.2 GPa over a  slip 
distance of ~50 microns.

Exercise: Estimate G from these data and compare it to the values 
reported in Scholz (Table 1.1) and Wong, 1982. 

Lockner et al., 1991 Inferred shear stress vs. slip 
relation for slip-weakening 
model. (based on Wong, 1982)



Fluids: Consider the affects on shear strength

•Mechanical Effects
•Chemical Effects

σeffective =  σn - PpMechanical Effects:  Effective Stress Law

σ1σ1

σ3

σ3

Pp



σeffective =  σn - PpMechanical Effects:  Effective Stress Law

σ1σ1

σ3

σ3

Pp

Rock properties depend on effective stress: Strength, porosity, permeability, 
Vp, Vs, etc.

Leopold Kronecker (1823–1891)

Fluids: Consider the affects on shear strength

•Mechanical Effects
•Chemical Effects



σeffective =  σn - Pp

σ1σ1

σ3

σ3

Pp

Exercise: Follow through the implications of Kronecker’s delta to see 
that pore pressure only influences normal stresses and not shear 
stresses.  Hint: see the equations for stress transformation that led to 
Mohr’s circle.
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Fluids play a role by opposing the 
normal stress

Void space filled with a fluid at 
pressure Pp

But what if Ar ≠ A ?

σ
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Void space filled with a fluid at 
pressure Pp

But what if Ar ≠ A ?

σ

For example, we expect that 
shear strength depends on 
effective stress, but perhaps 
not in the way envisioned by:
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Mechanical Effects:  Effective Stress Law

For brittle conditions,  
Ar / A  ~ 0.1

σ

Exercise: Consider how a change in applied stress would differ from a change in Pp 
in terms of its effect on Coulomb shear strength. Take α = 0.9
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Effective Stress Law

σ

Coupled Effects

Applied Stress

Pore 
Pressure

Strength, 
Stability

Exercise: Make the dilatancy demo described by Mead (1925) on pages 687-688.  
You can use a balllon, but a plastic bottle with a tube works better.  Bring to class 
to show us.  Feel free to work in groups of two.

Dilatancy: Shear driven volume change
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Effective Stress Law
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Applied Stress

Pore 
Pressure

Strength, 
Stability

Dilatancy

Pore Fluid, PpPore Fluid, Pp

Shear 
Rate



Dilatancy: 

Pore Fluid, PpPore Fluid, Pp

Volumetric Strain:
Assume no change in 

solid volume

Dilatancy Rate: 

Shear 
Rate



Dilatancy: 

Pore Fluid, PpPore Fluid, Pp

Volumetric Strain:
Assume no change in 

solid volume

Dilatancy Rate: 

Shear 
Rate

Dilatancy Hardening if : or

Undrained loading



Pore Fluid, PpPore Fluid, Pp

Shear 
Rate

Dilatancy Hardening if : 



Pore Fluid, PpPore Fluid, Pp

Shear 
Rate

Dilatancy Weakening can occur if: 

This is shear driven compaction



Pore Fluid, Pp

Consider the implications of dilatancy and volume change 
for the total work of shearing, W
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W  =  τ p  dγ  +  σ  dθ

W is total work of shearing

W = τ dγ = σ µ dγ



Consider the implications of dilatancy and volume change 
for the total work of shearing, W



dh

dx

Friction mechanics 
of  2-D particles
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W  =  τ p  dγ  +  σ  dθ

W is total work of shearing

W = τ dγ = σ µ dγ

Data from Knuth 
and Marone, 2007



Friction mechanics 
of  2-D particles
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τ  =  σ µ p +  dθ / dγ( )
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dθ=dV /V  ; dγ =dx  /h
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Data from Knuth 
and Marone, 2007



Friction mechanics 
of  2-D particles

€ 

τ  =  σ µ p +  dθ / dγ( )
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τ  =  σ µ p +  dh /dx( )
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W  =  τ p  dγ  +  σ  dθ • Dilatancy rate plays 
an important role in 
setting the frictional 
strength

dh

dx

Data from Knuth 
and Marone, 2007



• Macroscopic 
variations in friction 
are due to variations 
in dilatancy rate.

• Smaller amplitude 
fluctuations in 
dilatancy rate 
produce smaller 
amplitude friction 
fluctuations.

Data from Knuth 
and Marone, 2007


