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•Stress analysis and Mohr Circles
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•Stress concentrations
•Griffith failure criteria
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• Crack models
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•Discussion of Handin, JGR, 1969 and Chapter 1 Scholz

•Rankine’s condition: what is it?
•What is the coefficient of internal friction?
•How are material properties a function of the state of stress? What did 
Handin mean by this statement on p. 5344 (top left)?
•Rocks pass from brittle to ductile deformation mechanism with what 
changes in strain rate, temperature and pressure?    What does this mean 
for the linearity of the Mohr envelope?



Imagine that you’re in a restaurant with some friends. The owner stops by to say hello and after hearing
that you’re a geophysicist she challenges you to write down the Shear and Normal Stress on a Plane of
Arbitrary Orientation given the principal stresses.

She calls the waiter over and he gives you a couple extra napkins and a pencil and says, don’t worry
about the third dimension because that’s always in the fault plane for simple (Andersonian) faulting. So
you know that you can just use two principal stresses. The maximum and minimum stress. Go ahead and
call them σ1 and σ2

σ

τ

σ2 σ1

P

σ(2α) =
τ(2α) =

σ1

σ2

Ok, get to work! You’ve got to finish before he brings the drinks 

Sketch in plane P



Coefficient of friction µ = F/N

φ

m

mgφ FN

Amonton’s Law:
F/N = µ = tan φ

In terms of stresses: τ = µ σn

Mass on an inclined plane, as in a simple friction experiment.

This failure criterion can be plotted on a Mohr diagram

σ

τ τ =  µ’ σn

For this stress state, 
the Mohr plot shows 
that frictional failure 
would occur on any 
plane of orientation 
between φ1 and φ2

φ1φ2



The Coulomb criterion can be used to calculate uniaxial breaking strength Co

σ

τ
τ = τ o + µ’ σn

φ3

Co = 2 τo [ (µ2 + 1)1/2 + µ]

And things get more complicated if you get into the tensile stress field

tension Compression



Theoretical strength of materials
•Defects
•Stress concentrations
•Griffith failure criteria
•Energy balance for crack propagation
•Stress intensity factor



Theoretical strength of materials
•Defects
•Stress concentrations
•Griffith failure criteria
•Energy balance for crack propagation
•Stress intensity factor

Start by thinking about the theoretical 
strength of materials –and take crystals 
as a start.  The strength of rocks and 
other polycrystalline materials will also 
depend on cementation strength and 
grain geometry so these will be more 
complex.



Consider a tensional stress field, and take a as the equilibrium lattice spacing.
Approximate the region around the peak strength as a sinusoid, wavelength λ

Then, for small changes in lattice spacing: the rate of stress change is related to E.

Theoretical strength, 
σt , of simple crystals:
Bonds must break along 
a lattice plane

   λ/2
a



The strain energy and stress is zero at thermodynamic equilibrium, which occurs at
r= 3a/2 and since a ≈ λ, the theoretical strength is about E/2π. (See Scholz, Ch. 1.1
for additional details).
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σ t =
Eλ
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σ t ≈
E
2π

Tensile Strength of single x’l, by our approximation:

•This type of calculation was carried out in the early 1900’s
and people immediately realized that there was a problem.
•Experiments showed that E was on the order of 10’s of GPa,
whereas the tensile strength of most materials is closer to
10’s of MPa.

•Griffith proposed a solution in two classic papers in the early 1920’s –but the proof
of his ideas had to wait until the invention of the electron microscope.

Bottom line: Defects.
Defects severely reduce the strength of brittle materials relative to the theoretical
estimate. Flaws exist at all scales from atomic to the specimen size (laboratory sample
size or continent scale, in the case of plate tectonics)



Stress concentrations around defects cause the local stress to reach the
theoretical strength.

Two types of defects cause two types of deformation:
• cracks and crack propagation lead to brittle deformation;
• dislocations and other types of atomic misregistration lead to plastic flow and
‘ductile’ deformation.

Brittle deformation generally leads to catastrophic failure and separation of lattice
elements.

Plastic flow produces permanent deformation without loss of lattice integrity.

Scholz generalizes these modes of deformation to make a connection with lithospheric
deformation.

The upper lithosphere deforms primarily by brittle mechanisms and can be referred
to as the schizosphere (lit. the broken part), whereas

the lower lithosphere deforms by ductile mechanisms and can be classified as the
plastosphere.



Rheology and Deformation. Definitions.

The terms brittle and ductile can be defined in a number of ways. One def. is given
above. Another important operational definition involves the stress-strain
characteristics and the dependence of strength on mean (or normal stress).

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

Brittle and Ductile (or plastic) deformation can be
distinguished on the basis of whether the yield
strength depends on pressure (mean stress or
normal stress).



Rheology and Deformation. Definitions.

The term ‘brittle’ is also used to describe materials that break after very little strain.

Fracture toughness describes a material’s ability to deform without breaking.
•Brittle materials (like glass or ceramics) have low toughness.
•Plastics have high toughness

Shear or 
differential 

stress,
σ

Strain, ε,<1%



What causes the pressure sensitivity of brittle deformation?

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

• Volume change. Brittle deformation involves volume change –dilatancy or compaction.
• ‘Dilation’ means volume increase. Dilatancy describes a shear induced volume

increase. The term was introduced to describe deformation of granular materials –
but dilation also occurs in solid brittle materials via the propagation of cracks.

• Work is done to increase volume against the mean stress during brittle deformation,
thus the pressure sensitivity of brittle deformation.

• Ductile deformation occurs without macroscopic volume change, due to the action of
dislocations. Dislocation motion allows strain accommodation.



€ 

σ =σ∞ 1 + 2 c
b

$ 
% 

& 
' 

σ =2σ∞ 1 + 2 c
ρ

$ 

% 
) 

& 

' 
* 

Stress concentrations around defects.

In general, the stress field around cracks and other defects is quite complex, but there
are solutions for many special cases and simple geometries

Scholz gives a partial solution for an elliptical hole in a plate subject to remote uniform
tensile loading (ρ is the local curvature)
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Crack tip stresses σ
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Full solution for a circular hole of radius r=a

σ

Malvern (1969) gives a full solution for a circular hole or radius r = a
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Bond separation and specific surface energy.

•Fracture involves creation of new surface area.
•The specific surface energy is the energy per unit area required to break bonds.

Two surfaces are created by separating the material by a distance λ/2 and the work
per area is given by stress times displacement.

This yields the estimate: .

The surface energy is a fundamental physical quantity and we will return to it when we
talk about the energy balance for crack propagation and the comparison of laboratory
and seismic estimates of G, the fracture energy.
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Can crack mechanics help to solve, quantitatively, the huge discrepancy between the 
theoretical (~10 GPa) and observed (~10 MPa) values of tensile strength?
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σ ≈2σ∞

c
ρFor a far field applied stress of σ∞, we have crack tip stresses of

Taking σ as σt, we can combine the relations for 

theoretical strength                and surface energy

to get:

€ 

σ t =
Eλ
2πa

€ 

γ =
Ea
4π 2

€ 

σ t =
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If we take crack radius as approx. equal to a, the lattice dimension, then setting σt, 
equal to σ at the crack tip, we have:
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2σ∞

c
a =  Eγ

a ,  which  yields:  σ∞ =  Eγ
4c

Taking σ∞ of 10 MPa, E= 10 GPa and γ of 4 x 10-2 J/m2, gives a crack 
half length c of 1 micron.  



•Griffith proposed that all materials contain 
preexisting microcracks, and that stress will 
concentrate at the tips of the microcracks

•The cracks with the largest elliptical ratios 
will have the highest stress, and this may be 
locally sufficient to cause bonds to rupture 

• As the bonds break, the ellipticity increases, 
and so does the stress concentration

• The microcrack begins to propagate, and 
becomes a real crack

• Today, microcracks and other flaws, such as 
pores or grain boundary defects, are known as 
Griffith defects in his honor



C.  A.  Coulomb  (1736-­1806)



Brittle  Failure  and  Time  dependence  of  
“static” friction



Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal Stresses:

Mohr Circle.
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σ2 σ1
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τ = τ o + µ’ σn

τo

τ =  + µ σn

φφ’

FRACTURE

FRICTION

But, note that in general: µ ≠ µ' and φ ≠ φ'
That is, the coefficient of sliding friction is not necessarily 
equal to the coefficient of internal friction.



What is the longest block that can be slid in frictional contact?
Fracture will occur first for very long blocks
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What is the longest block that can be slid in frictional contact?
Fracture will occur first for very long blocks

σΗ

FRICTION

FRACTURE



What is the longest block that can be slid in frictional contact?
Fracture will occur first for very long blocks

σΗ

FRICTION

FRACTURE



What is the longest block that can be slid in frictional contact?
Fracture will occur first for very long blocks
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The Coulomb and Frictional failure criteria may be 
considered together, on a Mohr diagram

σ

τ
τ =  µ’ σn

φ1φ2

τ = τ o + µ’ σn

This shows that pre-existing planes of weakness, of 
orientations from φ1 to φ2, will fail by frictional slip prior 
to a new fracture forming at orientation φ3.

φ3



What about under compression?
•Pressure-dependent brittle failure
•Failure stress is higher under higher normal stress.

Macroscopic Failure Criteria:  Faulting, Fracture, Friction

These are not in general rheologic laws, but rather relationships 
between principal stresses (or applied stresses) at failure.

σ3 σ3

In tension, we have failure at σ3 = -To, where To is the tensile 
strength.  

How does tensile strength depend on pressure, applied stresses, 
temperature?

Handin, J. (1969), On the Coulomb-Mohr failure criterion, JGR. 74, 5343-5348



Ramsey & Chester: Hybrid fracture and the 
transition from extension fracture to shear 
fracture, Nature 428, 63-66 (4 March 2004)

Griffith, Modified Griffith: to explain curvature 
and transitional (hydrid) fractures. Based on stress 
concentrations at crack tips.



Rheology and Deformation. Definitions.

The terms brittle and ductile can be defined in a number of ways. One def. is given by
the Coulomb Failure Criterion.
Another important operational definition involves the stress-strain characteristics and
the dependence of strength on mean or normal stress.

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

Brittle and Ductile (or plastic) deformation can be distinguished on the
basis of whether the yield strength depends on pressure (mean stress or
normal stress).

Why would yield strength depend on mean stress?



Rheology and Deformation. Definitions.

The term ‘brittle’ is also used to describe materials that break after very little strain.
These materials have low fracture toughness.

Fracture toughness describes a materials ability to deform without breaking.
•Brittle materials (like glass or ceramics) have low toughness.
•Plastics have high toughness

Shear or 
differential 

stress,
σ

Strain, ε,<1%



What causes the pressure sensitivity of brittle deformation?

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

• Volume change. Brittle deformation involves volume change –dilatancy or compaction.
• ‘Dilation’ means volume increase. Dilatancy describes a shear induced volume

increase. The term was introduced to describe deformation of granular materials –
but dilation also occurs in solid brittle materials via the propagation of cracks.

• Work is done to increase volume against the mean stress during brittle deformation,
thus the pressure sensitivity of brittle deformation.

• Ductile deformation occurs without macroscopic volume change, due to the action of
dislocations. Dislocation motion allows strain accommodation.



• Brittle deformation and dilatancy

Axial Strain,   Volumetric Strain

Differential 
Stress,
(σ1 - Pc)

Fracture

Dilatancy:  cracks forming and opening

Hardening, Modulus Increase:  
cracks closing

Brace, Paulding & Scholz, 1966; Scholz 1968.



Strain

Differential 
Stress,
(σ1 - Pc)

Pc1
Pc2

Pc5 > Pc4 
…

Brittle Failure:  If we draw the stress-strain-failure curves for a range of 
confining pressures, we’ll get a range of yield strengths, showing that   σy is 
proportional to Pc.

Stress-strain-failure curves

With increasing confining 
pressure there is a transition 
from localized to more 
broadly distributed 
deformation.

These styles can be loosely 
related to Brittle and 
Ductile deformation, 
respectively.  
Brittle refers to pressure 
sensitive deformation



Theoretical strength of materials
•Defects
•Stress concentrations
•Griffith failure criteria
•Energy balance for crack propagation
•Stress intensity factor

Start by thinking about the theoretical 
strength of materials –and take crystals 
as a start.  The strength of rocks and 
other polycrystalline materials will also 
depend on cementation strength and 
grain geometry so these will be more 
complex.



Consider a tensional stress field, and take a as the equilibrium lattice spacing.
Approximate the region around the peak strength as a sinusoid, wavelength λ

Then, for small changes in lattice spacing: the rate of stress change is related to E.

Theoretical strength, 
σt , of simple crystals:
Bonds must break along 
a lattice plane

   λ/2
a



The strain energy and stress is zero at thermodynamic equilibrium
Because a ≈ λ, the theoretical strength is about E/2π. (See Scholz, Ch. 1.1 for
additional details).
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2πa
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σ t ≈
E
2π

Tensile Strength of single x’l, by our approximation:

•This type of calculation was carried out in the early
1900’s and people immediately realized that there was a
problem.
•Experiments showed that E was on the order of 10’s of
GPa, whereas the tensile strength of most materials is
closer to 10’s of MPa.



The strain energy and stress is zero at thermodynamic equilibrium
Because a ≈ λ, the theoretical strength is about E/2π. (See Scholz, Ch. 1.1 for
additional details).

€ 

σ t =
Eλ
2πa

€ 

σ t ≈
E
2π

Tensile Strength of single x’l, by our approximation:

•This type of calculation was carried out in the early
1900’s and people immediately realized that there was a
problem.
•Experiments showed that E was on the order of 10’s of
GPa, whereas the tensile strength of most materials is
closer to 10’s of MPa.

•Griffith proposed a solution in two classic papers in the early 1920’s –but the proof
of his ideas had to wait until the invention of the electron microscope.

Bottom line: Defects.
Defects severely reduce the strength of brittle materials relative to the theoretical
estimate. Flaws exist at all scales from atomic to the specimen size (laboratory sample
size or continent scale, in the case of plate tectonics)



Stress concentrations around defects cause the local stress to reach the
theoretical strength.

Two types of defects cause two types of deformation:
• cracks and crack propagation lead to brittle deformation;
• dislocations and other types of atomic misregistration lead to plastic flow and
‘ductile’ deformation.

Brittle deformation generally leads to catastrophic failure and separation of
lattice elements.

Plastic flow produces permanent deformation without loss of lattice integrity.

Scholz generalizes these modes of deformation to make a connection with lithospheric
deformation.

The upper lithosphere deforms primarily by brittle mechanisms and can be referred
to as the schizosphere (lit. the broken part), whereas

the lower lithosphere deforms by ductile mechanisms and can be classified as the
plastosphere.
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Stress concentrations around defects.

In general, the stress field around cracks and other defects is quite complex, but there
are solutions for many special cases and simple geometries

Scholz gives a partial solution for an elliptical hole in a plate subject to remote uniform
tensile loading (ρ is the local curvature)

Crack tip stresses σ
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Full solution for a circular hole of radius r=a

Malvern (1969) gives a full solution for a circular hole of radius r = a
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•Griffith proposed that all materials contain 
preexisting microcracks, and that stress will 
concentrate at the tips of the microcracks

•The cracks with the largest elliptical ratios 
will have the highest stress, and this may be 
locally sufficient to cause bonds to rupture 

• As the bonds break, the ellipticity increases, 
and so does the stress concentration

• The microcrack begins to propagate, and 
becomes a real crack

• Today, microcracks and other flaws, such as 
pores or grain boundary defects, are known as 
Griffith defects in his honor



Bond separation and specific surface energy.

•Fracture involves creation of new surface area.
•The specific surface energy is the energy per unit area required to break bonds.

Two surfaces are created by separating the material by a distance λ/2 and the work
per area is given by stress times displacement.

This yields the estimate:

The surface energy is a fundamental physical quantity and we will return to it when we
talk about the energy balance for crack propagation and the comparison of laboratory
and seismic estimates of G, the fracture energy.
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Griffith posed the problem of 
crack propagation at a 
fundamental level, on the 
basis of thermodynamics.

He considered the total 
energy of the system, 
including the region at the 
crack tip and just in front of 
a propagating crack.

Crack mechanics and crack propagation

Total energy of the system is U and the crack length is 2c, then 
the (cracked) solid is at equilibrium when dU/dc = 0

•Work to extend the crack is W
•Change in internal strain energy is Ue
•Energy to create surface area is Us

Then: U = (-W + Ue) + Us



Crack mechanics and crack propagation, Griffith theory

•Work to extend the crack is W
•Change in internal strain energy is Ue
•Energy to creation surface area is Us

Then: U = (-W + Ue) + Us

•Mechanical energy (-W + Ue) decreases w/ crack 
extension.  This is the energy supply during crack 
extension.  

•(-W + Ue) may come from the boundary or from local 
strain energy.

•The decrease in mechanical energy is balanced by an
increase in surface energy (Us is related to specific 
surface energy, γ, discussed above.

•The crack will extend if dU/dc < 0



Energy balance for crack propagation, Griffith theory

U = (-W + Ue) + Us
•Crack will extend if dU/dc < 0 
•System is at equilibrium if dU/dc = 0

Consider a rod of length y, modulus E and unit cross section loaded in tension:

• Internal energy is: Ue = yσ2/2E, for uniform tensile stress σ
• For a crack of length 2c, internal strain energy will increase by πc2σ2/E

• Introduction of the crack means that the rod becomes more compliant:
•The effective modulus is then: E’ = yE/(y+2πc2)

• The work to introduce the crack is: W = σy(σ/E’ - σ/E) = 2πc2σ2/E
• Change in surface energy is Us = 4cγ

• Thus: U = -πc2σ2/E + 4cγ,
• At equilibrium: the critical stress for crack propagation (failure stress) is: 
σf = (2Eγ/π�)1/2



U = (-W + Ue) + Us
•Crack will extend if dU/dc < 0 
•System is at equilibrium if dU/dc = 0

• The critical stress for crack propagation (failure stress): σf = (2Eγ/π�)1/2

Taking σ∞ of 10 MPa, E= 10 GPa and γ of 4 x 10-2 J/m2, gives a crack half 
length c of 1 micron.  
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U = (-W + Ue) + Us
•Crack will extend if dU/dc < 0 
•System is at equilibrium if dU/dc = 0



Fracture Mechanics and
Stress intensity factors for each mode

KI, KII, KIII

Linear Elastic Fracture Mechanics
•Frictionless cracks
•Planar, perfectly sharp (mathematical) cuts

Crack tip stress field written in a generalized form
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Fracture Mechanics and
Stress intensity factors for each mode

KI, KII, KIII

Linear Elastic Fracture Mechanics
•Frictionless cracks
•Planar, perfectly sharp (mathematical) cuts
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Crack tip stress field written in a generalized form



For uniform remote loading of a 
crack of length 2c:
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Static vs. dynamic fracture mechanics, relativistic effects
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gI 0( ) = gII 0( ) = gIII 0( ) =1 Static

€ 

gI v( )  → ∞  and = gII v( ) →∞,  as  v→ CR

€ 

gIII v( )  =  1
1− η2 /Cs

2
→∞,  as  v→ Cs

Dynamic crack propagation
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σ22
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σ21

rr’G is Energy flow to crack tip per unit new crack area 

€ 

G  =  
1−η( )
2µ

gI v( )KI
2 + gII v( )KII

2[ ]  + 1
2µ

gIII v( )KIII
2

€ 

G  =  Gcritical  =  2γ Critical energy release rate
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Gcrit is a material property --the “fracture energy”

Gcrit = Kc
2/ E = 2γ, where Kc is the critical stress intensity factor 

(also known as the fracture toughness). 



Stress field is singular at the crack tip.
•because we assumed perfectly sharp crack
•but real materials cannot support infinite stress 
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KI =  πc  σ∞

Process zone (Irwin) to account for non-linear 
zone of plastic flow and cracking

•Size of this zone will depend upon crack 
velocity, material properties and crack 
geometry

•Energy dissipation in the crack tip region 
helps to limit the stresses there (why?)
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