Mechanics of Earthquakes and Faulting
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Slow earthquakes and the opportunity to further investigate the application of rate
state friction laws to instability.

Mechanisms: Why are they slow?
Quasi-dynamic frictional instability (positive feedback, self-driven instability)

Precursory changes in fault zone (elastic) properties prior to failure for the spectrum
of fault slip rates
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Stiffness, Frictional Rheology
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Frictional Sliding: Stability
transition depends on strain
(shear displacement) and
slip velocity)
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Friction of simulated fault gouge for a wide range of velocities
and normal stresses
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Frictional Sliding: Stability transition depends on strain (shear
displacement) and slip velocity)
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Stiffness, K

Frictional Sliding: Stability transition depends on strain (shear
displacement) and slip velocity)
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Slow Slip
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Slow Earthquakes --a view from the lab
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Slow earthquakes could represent quasi-dynamic frictional instability
(positive feedback, self-driven instability)

Recent lab work shows repetitive stick-slip instability for the
complete spectrum of slip behaviors — A new opportunity to
investigate the mechanics of slow slip

Mechanisms: Why are they slow?

A. Quasi-dynamic frictional instability (positive feedback,
self-driven instability)

Rate dependence of the critical rheologic weakening
rate, K. (V)

Fracture mechanics: energy release rate equals
frictional weakening rate, stress drop is quasidynamic
because the dynamic force imbalance is negligible




Speculations on how the results may apply in nature

A. Where should slow earthquakes occur?

B. How could we get slow and fast slip on the same fault

segment?

Accretionary Wedge

..... Overriding Plate

Domain A

Domain B

Domain C

Domain D

Lay, 2015

Lab guidance

Slow slip and

complex behavior
near the stability
boundary, defined

by: KFL“KC
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Speculations on how the results may in apply in nature

B. Source Parameters and Scaling Relations for
Slow Earthquakes

n = 0.25

Dislocation model for fault slip and
earthquake rupture



Earthquakes nucleate when the fault slip patch exceeds a certain
size, related to local stiffness and friction
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Earthquakes nucleate when the fault slip patch exceeds a certain
size, related to local stiffness and friction
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Earthquakes nucleate when the fault slip patch exceeds a certain

size, related to local stiffness and friction

n = 0.25

Precursory phenomena
should occur in the
nucleation zone



Earthquakes occur on faults A7 _ vz 4
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1. Earthquake Source properties are
reasonably well described as
propagating elastodynamic rupture

2. Earthquake Nucleation occurs h*
when the patch size exceeds A*



Earthquakes occur on faults
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Earthquake Source Parameters and Scaling Relations

n = 0.25

Dislocation model for fault slip and

earthquake rupture
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Earthquake Source Parameters and Scaling Relations
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Earthquake Source Parameters and Scaling Relations
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