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• Slow earthquakes and the opportunity to further investigate the application of rate 
state friction laws to instability.

• Mechanisms: Why are they slow?

• Quasi-dynamic frictional instability (positive feedback, self-driven instability)

• Precursory changes in fault zone (elastic) properties prior to failure for the spectrum 
of fault slip rates
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Fault Structure



Frictional Sliding: Stability 
transition depends on strain 

(shear displacement) and 
slip velocity)
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Frictional Sliding: Stability transition depends on strain (shear 
displacement) and slip velocity)



Frictional Sliding: Stability transition depends on strain (shear 
displacement) and slip velocity)
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Slow Slip

Leeman, Marone & Saffer JGR, 2018
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Kc is a 
function of slip 
velocity, 
normal stress, 
and the 
friction 
parameters
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Slow Earthquakes  --a view from the lab
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Leeman, Marone & Saffer JGR, 2018
dc = 100 μm, b-a = 0.005
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Scuderi, Marone, Tinti, Di Stefano, & Collettini, Nature Geosc. 2016

Period Doubling Near The Stability 
Boundary

Gu et al., 1984
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1. Slow earthquakes could represent quasi-dynamic frictional instability 
(positive feedback, self-driven instability)

2. Recent lab work shows repetitive stick-slip instability for the 
complete spectrum of slip behaviors – A new opportunity to 
investigate the mechanics of slow slip

3. Mechanisms: Why are they slow?
A. Quasi-dynamic frictional instability (positive feedback, 

self-driven instability)

B. Rate dependence of the critical rheologic weakening 
rate, Kc(V)

C. Fracture mechanics: energy release rate equals 
frictional weakening rate, stress drop is quasidynamic
because the dynamic force imbalance is negligible 



Slow slip and 

complex behavior 
near the stability 

boundary, defined 

by:

A. Where should slow earthquakes occur?
B. How could we get slow and fast slip on the same fault 

segment?

Speculations on how the results may apply in nature 

Lab guidance 

K ⇡ Kc

Lay, 2015



�n(b� a)

Dc

• Complex slip modes 
near the stability 
boundary

• Slow slip should 
occur at the updip
and downdip limits 
of the seismogenic
zone
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Dislocation model for fault slip and 
earthquake rupture

r

h = 0.25

B. Source Parameters and Scaling Relations for 
Slow Earthquakes

Speculations on how the results may in apply in nature 



Earthquakes nucleate when the fault slip patch exceeds a certain 
size, related to local stiffness and friction
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Local stiffness

Earthquakes nucleate when the fault slip patch exceeds a certain 
size, related to local stiffness and friction
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r

h = 0.25

Precursory phenomena 
should occur in the 

nucleation zone

Earthquakes nucleate when the fault slip patch exceeds a certain 
size, related to local stiffness and friction
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Earthquakes occur on faults Mo = GūA

1. Earthquake Source properties are 
reasonably well described as 
propagating elastodynamic rupture

2. Earthquake Nucleation occurs 
when the patch size exceeds h*

G, Shear Modulus
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Earthquakes occur on faults

Mo = GūA

1. Earthquake Source properties are 
reasonably well described as 
propagating elastodynamic rupture

2. Earthquake Nucleation occurs 
when the patch size exceeds h*

G, Shear Modulus

r =
GDc
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Dislocation model for fault slip and 
earthquake rupture
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Earthquake Source Parameters and Scaling Relations



Rupture Patch Size for Slow Earthquakes
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Ide et al., 2007; Peng and Gomberg, 2010 

Earthquake Source Parameters and Scaling Relations
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Earthquake Source Parameters and Scaling Relations



Mo = C��r3

Mo ⇡ VrT

Slow slip when 
effective rupture 
patch size is limited 
by heterogeneityr

Mo
patch = Gūr2



Slow slip when 
effective rupture 
patch size is limited 
by heterogeneity
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Bürgmann, 2015; Houston, 2015 Richardson and Marone, 2008


