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Slow earthquakes and the opportunity to further investigate the application of rate
state friction laws to instability.

Recent lab work showing repetitive stick-slip instability for the complete spectrum
of slip behaviors — A new opportunity to investigate the mechanics of slow slip

Mechanisms: Why are they slow?

Quasi-dynamic frictional instability (positive feedback, self-driven instability)
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The spectrum of fault slip behaviors
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Slow Earthquakes are self-propagating ruptures

Slip on the fault patch elevates the
crack-tip stresses to the levels
necessary for continued fracture
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Ordinary Earthquakes

Seismic waves are created by
rapid acceleration at the
rupture front

Ordinary (fast)
Earthquakes

V.. isafew km/s

Images from the aftermath of the Anchorage earthquake

M7.1 2018 Anchorage Earthquake




Slow Earthquakes are also self-propagating ruptures

They don’t radiate elastic energy

But they obey Fracture Mechanics

Slip on the fault patch elevates the crack-tip stresses to the
levels necessary for continued fracture
-the energy release rate equals the fracture energy

Slow Eartfhquakes

V.- is a few km/day




Slow Earthquakes and the spectrum of fault slip behavior
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Strainmeters with high sensitivity over long periods have
enabled the detection and identification of slow earth-
quakes: seismic events which produce records similar to
those from normal earthquakes except that the time scale for
the rupture process is considerably longer. Slow earthquakes
provide a mechanism for stress redistribution before normal
earthquakes. Stress concentration may take place just hours
or days before an earthquake; if it did, this would affect
prediction capability.

all respects except for slower rupture velocities and longer rise
times. Here we describe slow earthquakes which occur
separately from normal earthquakes and which were observed
on the recently installed borehole strainmeters or on nearby
extensometers. Other kinds of data are also included which
indicate that the stress buildup before an earthquake may be
non-linear in time. In these cases the concentrations of stress
seem to occur in a much shorter time preceding the earthquake
than that calculated on the basis of magnitude—precursor-time
formulae®.

Strainmeter waveforms for
normal and slow earthquakes

Sacks et al., 1978

Beroza and Jordan, 1990
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1. Slow earthquakes could represent quasi-dynamic
frictional instability (positive feedback, self-driven
instability)

2. Recent lab work shows repetitive stick-slip
instability for the complete spectrum of slip
behaviors — A new opportunity to investigate the
mechanics of slow slip

3. Mechanisms: Why are they slow?
* Rate dependence of the critical rheologic
stiffness Kc¢
* Complex behavior near the stability boundary




John Leeman

PennState

SAPIENZA

UNIVERSITA DI ROMA

Marco Scuderi

‘-\4

ARTICLE

ived 4 Nov 2015 | Accepted 19 Feb 2016 | Published 31 Mar 2016

Laboratory observations of slow earthquakes
and the spectrum of tectonic fault slip modes

J.R. Leeman', D.M. Saffer!, M.M. Scuderi"2 & C. Marone'
Nature Communications

=0 _ TR | e

nature _
geOSCICHCC PUBLISHED ONLINE: 8 AUGUST 201 LETTERS
] 6 | DOI: 10.1038/NGEO2775

Precursory changes in seismic velocity for the
spectrum of earthquake failure modes

M. M. Scuderi?*, C. Marone?, E. Tinti?, G. Di Stefano? and C. Collettini?




BRAVA at INGV (Rome)
collettini Lab

Double direct shear with biaxial loading

and controlled loading stiffness




High-resolution, direct measurements of shear displacement, shear strain,
normal strain, stresses
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Biaxial testing machine at Penn State
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To get slow slip we modify the
elastic loading stiffness and take
advantage of natural variations
in the frictional properties as a
function of shear
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Rate and State Friction
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Stability transition from stable to unstable sliding.
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Stability transition from stable to unstable sliding.
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Repetitive Slow Stick-Slip
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Shear Stress [MPa]

14
: WWWWWW 3

—— L Mrﬂ LT 12

Slow Slip Events

Normal Stress
MPa

6 8 10 12 14 16
Load Point Displacement [mm]

Leeman, Saffer, Scuderi & Marone, Nat. Comm. 2016



Friction

A

e v VIV VWY WWY

10 11 12 13 14
Load Point Displacement [mm]

15

16

s, =14 MPa
pa3s1

o, = 13 MPa
pa350

s, =12 MPa

pa342

o, = 11 MPa
pa34s

o, = 10 MPa
pa3a7

o, =9 MPa
pa3a6

o, = 8 MPa
pa3as

o, = 71 MPa
pa3as

o, = 6 MPa

V pa3a3
17



Mechanics of Faulting On K T
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Double direct shear with biaxial loading






We measure elastic loading stiffness using 2 methods
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Shear Stress [MPa]
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Rate and State Friction

Dieterich, Scholz, Ruina, Rice

Coefficient of Friction

Empirical laws, based on laboratory friction data
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Fault Zone Microstructure
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Fault Zone Microstructures

* Fault zone microstructure and shear fabric has a
clear signature in friction constitutive properties.

* As shear localizes the fault zone becomes more
unstable.

4y
pressure |spot| mag |
DualBSD |20.00 kV|13.1 mm|[2.53e-4 Pa FEI Quanta




Stick & slip: nano-structures NEAR the slipping plane.
Some fractured Q grains (1 um-300 nm) with sharp grain-

boundaries. Dislocations with sub-grains development.
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Stick & slip: nano-structures INTO the slipping plane.
Smaller grains surrounded by an amorphous film.

Q lattice structure
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Shear Stress (t), MPa
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Repetitive Slow Stick-Slip
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Stiffness, Frictional Rheology
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Frictional Sliding: Stability transition depends on strain
(shear displacement) and slip velocity)
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Frictional Sliding: Stability transition depends on strain (shear
displacement) and slip velocity)
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Friction of simulated fault gouge for a wide range of velocities
and normal stresses
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Slow Earthquakes --a view from the lab
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Slow earthquakes could represent quasi-dynamic frictional instability
(positive feedback, self-driven instability)

Recent lab work shows repetitive stick-slip instability for the
complete spectrum of slip behaviors — A new opportunity to
investigate the mechanics of slow slip

Mechanisms: Why are they slow?

A. Quasi-dynamic frictional instability (positive feedback,
self-driven instability)

Rate dependence of the critical rheologic weakening
rate, K. (V)

Fracture mechanics: energy release rate equals
frictional weakening rate, stress drop is quasidynamic
because the dynamic force imbalance is negligible




