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• Slow earthquakes and the opportunity to further investigate the application of rate 
state friction laws to instability.

• Recent lab work showing repetitive stick-slip instability for the complete spectrum 
of slip behaviors – A new opportunity to investigate the mechanics of slow slip

• Mechanisms: Why are they slow?

• Quasi-dynamic frictional instability (positive feedback, self-driven instability)

http://www.geosc.psu.edu/Courses/Geosc508


The spectrum of fault slip behaviors 

• Ordinary earthquakes

• Tsunamigenic earthquakes

• Tectonic Tremor

• Episodic tremor and slip (ETS)

• Low frequency earthquakes

• Very low frequency earthquakes

• Long term slow slip events

• Slow precursors

• Aseismic slip Houston, 2015
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Slow Earthquakes are self-propagating ruptures 

Slip on the fault patch elevates the 
crack-tip stresses to the levels 
necessary for continued fracture

Bürgmann, 2015; Houston, 2015

Slow Earthquakes

Vr is a few km/day

One Month in 2010



Ordinary Earthquakes

Ordinary (fast) 
Earthquakes

Vr is a few km/s

h = 0.25

rSeismic waves are created by 
rapid acceleration at the 
rupture front

M7.1 2018 Anchorage Earthquake



Slow Earthquakes are also self-propagating ruptures 

They don’t radiate elastic energy

But they obey Fracture Mechanics

Slip on the fault patch elevates the crack-tip stresses to the 
levels necessary for continued fracture
-the energy release rate equals the fracture energy

h = 0.25

r

Slow Earthquakes

Vr is a few km/day



Slow Earthquakes and the spectrum of fault slip behavior

Sacks et al., 1978

Beroza and Jordan, 1990



1. Slow earthquakes could represent quasi-dynamic 
frictional instability (positive feedback, self-driven 
instability)

2. Recent lab work shows repetitive stick-slip 
instability for the complete spectrum of slip 
behaviors – A new opportunity to investigate the 
mechanics of slow slip

3. Mechanisms: Why are they slow?
• Rate dependence of the critical rheologic

stiffness Kc
• Complex behavior near the stability boundary
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Double direct shear with biaxial loading 
and controlled loading stiffness

Biax at Penn State
BRAVA at INGV (Rome)
Collettini Lab



Quartz 
powder, 
mean size is 
20 µm

High-resolution, direct measurements of shear displacement, shear strain,
normal strain, stresses

• Quartz 
powder 

• grain size 
< 10µm 



Biaxial testing machine at Penn State

shear 
velocity 
10 µm/s 
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How do we produce slow slip?

Rate and State Friction



Stability transition from stable to unstable sliding. 

Slip is unstable if

K < Kc

Complex behavior near 
the stability boundary, 
--but not for 1 sv rsf
model

k = K/Kc
Gu et al., 1984



Stability transi4on from stable to unstable sliding. 

Gu et al., 1984
k = K/Kc

Complex behavior near 
the stability boundary, 
--but not for 1 sv rsf
model

Slip is unstable if

K < Kc

Complex behavior near 
the stability boundary, 
--but not for 1 sv rsf
model



Repetitive Slow Stick-Slip

Leeman, Saffer, Scuderi & Marone, Nat. Comm. 2016
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Mechanics of Faulting

Frictional Sliding: Stick-slip
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Double direct shear with biaxial loading

µ t

�n
K 0

elastic loading stiffness





We measure elastic loading stiffness using 2 methods

K ≈ 4.5e-4 /µm

Leeman, Saffer, Scuderi & Marone



Slip is unstable if

K < Kc

Kc =
(b� a)
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Shear displacement

K ≈ 4.5e-4/µm
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Rate and State Friction
Dieterich, Scholz, Ruina, Rice

Dieterich State Evolution

V=2 V=1 µm/s

Empirical laws, based on laboratory friction data

Velocity weakening 
frictional behavior in 
granular fault gouge

(a-b) = - 0.003

Thermally-activated process



Fault Zone Microstructure

Scuderi, Viti, Tinti, Collettini, and Marone, Geology, 2017



Fault Zone Microstructures

• Fault zone microstructure and shear fabric has a 
clear signature in friction constitutive properties. 

• As shear localizes the fault zone becomes more 
unstable.  



Stick & slip: nano-structures NEAR the slipping plane.
Some fractured Q grains (1 µm-300 nm) with sharp grain-
boundaries.  Dislocations with sub-grains development. 

500 nm



Stick & slip: nano-structures INTO the slipping plane.
Smaller grains surrounded by an amorphous film.

Q lattice structure 

Amorphous material



Kc ≈ 7e-4/µm

Shear displacement

K ≈ 4.5e-4/µm

St
iff

ne
ss

,  
Fr

ic
ti
on

al
 R

he
ol

og
y

0 
-

+

K 0

�n
< KcKc =

(b� a)

Dc

Unstable if K < Kc



Repetitive Slow Stick-Slip

Scuderi et al., Geology, 2017
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Frictional Sliding: Stability transition depends on strain 
(shear displacement) and slip velocity)
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Frictional Sliding: Stability transition depends on strain (shear 
displacement) and slip velocity)
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Slow Slip

Leeman, Marone & Saffer JGR, 2018

Gu et al., 1984
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Kc is a 
function of slip 
velocity, 
normal stress, 
and the 
friction 
parameters
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Unstable slip if

Kc ⇡
�n(b� a)

Dc
K < Kc



Scuderi, Marone, Tinti, Di Stefano, & Collettini, Nature Geosc. 2016

Period Doubling Near The Stability 
Boundary



Displacement
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Slow Earthquakes  --a view from the lab
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1. Slow earthquakes could represent quasi-dynamic frictional instability 
(positive feedback, self-driven instability)

2. Recent lab work shows repetitive stick-slip instability for the 
complete spectrum of slip behaviors – A new opportunity to 
investigate the mechanics of slow slip

3. Mechanisms: Why are they slow?
A. Quasi-dynamic frictional instability (positive feedback, 

self-driven instability)

B. Rate dependence of the critical rheologic weakening 
rate, Kc(V)

C. Fracture mechanics: energy release rate equals 
frictional weakening rate, stress drop is quasidynamic
because the dynamic force imbalance is negligible 


