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•Surface and body forces
•Tensors, Mohr circles.  
•Theoretical strength of materials
•Defects
•Stress concentrations
•Griffith failure criteria
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Dislocation model for fracture and earthquake rupture

Dislocation model, circular crack
For an increment of stress (Δσ), how much slip occurs between the crack faces (Δu), 
and how does that slip vary with position (x, y) and crack radius (c)

c or r

Relation between stress drop and slip for a 
circular dislocation (crack) with radius r

For ν =0.25, Chinnery (1969)

•Importance of slip:  e.g., Mo = µ A u
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Δu(x, y) =  24
7π  Δσ

µ
c 2 − x 2 + y2( )



Transformation of Stress From One Coordinate System to Another
•Resolving the applied stress onto a plane, or set of planes, in a different orientation

x

y

τxy

τxx

τyxτyy

Segment dy of area: A cos α

α

Segment dx of area: A sin α

Plane P of area: A

The forces on plane A must balance those on segments dx and dy



Stress Transformationy

τxy

τxx

τyxτyy
Segment dx of area: A sin α

x

Segment dy of area: A cos α

α

Plane P of area: A
The forces on plane A 
must balance those on 
segments dx and dy

The force in a direction normal to P (σ A) has contributions from each of the four stress components:
• Force = Stress x Area
• 1) the shear force along dx is and it’s component normal to P is τyx A sin α cos α

• 2) the normal force along dx is and it’s component normal to P is τyy A sin α sin α

• 3) the shear force along dy is and it’s component normal to P is τxy A cos α sin α

• 4) the normal force along dy is and it’s component normal to P is τxx A cos α cos α

Force Normal to P:
Aσ = τyx + τyy + τxy + τxx



Stress Transformation

Force Normal to P:
Aσ = τyx A sin α cos α + τyy A sin α sin α + τxy A cos α sin α + τxx A cos α cos α

This can be simplified by eliminating A, using τxy = τyx and
using the identity 2 sin α cos α = sin 2 α

Normal Stress on Plane P:
σ = τxx cos2 α + τxy sin 2α + τyy sin2 α

Shear Force on P:
Aτ = τyx - τyy - τxy + τxx

This can be simplified to:
Shear Stress on Plane P:

  τ = (τxx - τyy) cos α sin α + τxy (sin2 α - cos2 α)

•Stress components are a function of coordinate frame and orientation

•Principal Stresses

•Shear stresses vanish, only normal stresses

•By convention, maximum principal stress is σ1 and σ1 > σ2 > σ3 , compression is positive

in 2D
τxx, 0
0, τyy,



Stress Transformation

Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal Stresses:

σ = τxx cos2 α + τxy sin 2α + τyy sin2 α

τ = (τxx - τyy) cos α sin α + τxy (sin2 α - cos2 α) 2D
τxx, 0
0, τyy,

σ = τxx + τyy

τ = (τxx - τyy)
σ = σ 1 cos2 α + σ 2 sin2 α, Normal Stress
τ = (σ 1 - σ 2) cos α sin α, Shear Stress

Use trig. identities such as cos 2α = 1 – 2 sin2α and sin 2α = 2 sin α cos α
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σ =  
σ1 +σ 2( )

2
+
σ 1 − σ 2( )

2
 cos2α Note that these relations make use of the 

mean stress and the 
differential stress



Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal Stresses:
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Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal Stresses:
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Coulomb-Mohr Failure Criterion τ = τ o + µ’ σn
where τ is shear stress τo is ‘ cohesion, ’
µ’ is the coefficient of internal friction and
σn is normal stress

2α

σ

τ

σ2 σ1

 

τ = τ o + µ’ σn

τo 2α

Pressure-dependent brittle failure
Failure stress is higher for things under higher normal stress.

The parameter µ’ describes the
effect of normal stress on shear
strength.

σ1

σ2

plane P



Theoretical strength of materials
•Defects
•Stress concentrations
•Griffith failure criteria
•Energy balance for crack propagation
•Stress intensity factor

Start by thinking about the theoretical 
strength of materials –and take crystals 
as a start.  The strength of rocks and 
other polycrystalline materials will also 
depend on cementation strength and 
grain geometry so these will be more 
complex.



Consider a tensional stress field, and take a as the equilibrium lattice spacing.
Approximate the region around the peak strength as a sinusoid, wavelength λ

Then, for small changes in lattice spacing: the rate of stress change is related to E.

Theoretical strength, 
σt , of simple crystals:
Bonds must break along 
a lattice plane

   λ/2
a



The strain energy and stress is zero at thermodynamic equilibrium, which occurs at
r= 3a/2 and since a ≈ λ, the theoretical strength is about E/2π. (See Scholz, Ch. 1.1
for additional details).
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σ t =
Eλ
2πa

€ 

σ t ≈
E
2π

Tensile Strength of single x’l, by our approximation:

•This type of calculation was carried out in the early 1900’s
and people immediately realized that there was a problem.
•Experiments showed that E was on the order of 10’s of GPa,
whereas the tensile strength of most materials is closer to
10’s of MPa.

•Griffith proposed a solution in two classic papers in the early 1920’s –but the proof
of his ideas had to wait until the invention of the electron microscope.

Bottom line: Defects.
Defects severely reduce the strength of brittle materials relative to the theoretical
estimate. Flaws exist at all scales from atomic to the specimen size (laboratory sample
size or continent scale, in the case of plate tectonics)



Stress concentrations around defects cause the local stress to reach the
theoretical strength.

Two types of defects cause two types of deformation:
• cracks and crack propagation lead to brittle deformation;
• dislocations and other types of atomic misregistration lead to plastic flow and
‘ductile’ deformation.

Brittle deformation generally leads to catastrophic failure and separation of lattice
elements.

Plastic flow produces permanent deformation without loss of lattice integrity.

Scholz generalizes these modes of deformation to make a connection with lithospheric
deformation.

The upper lithosphere deforms primarily by brittle mechanisms and can be referred
to as the schizosphere (lit. the broken part), whereas

the lower lithosphere deforms by ductile mechanisms and can be classified as the
plastosphere.



Rheology and Deformation. Definitions.

The terms brittle and ductile can be defined in a number of ways. One def. is given
above. Another important operational definition involves the stress-strain
characteristics and the dependence of strength on mean (or normal stress).

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

Brittle and Ductile (or plastic) deformation can be
distinguished on the basis of whether the yield
strength depends on pressure (mean stress or
normal stress).



Rheology and Deformation. Definitions.

The term ‘brittle’ is also used to describe materials that break after very little strain.

Fracture toughness describes a material’s ability to deform without breaking.
•Brittle materials (like glass or ceramics) have low toughness.
•Plastics have high toughness

Shear or 
differential 

stress,
σ

Strain, ε,<1%



What causes the pressure sensitivity of brittle deformation?

Yield 
strength,

σy Brittle, pressure sensitive

Ductile, pressure 
insensitive

Mean (normal) stress

• Volume change. Brittle deformation involves volume change –dilatancy or compaction.
• ‘Dilation’ means volume increase. Dilatancy describes a shear induced volume

increase. The term was introduced to describe deformation of granular materials –
but dilation also occurs in solid brittle materials via the propagation of cracks.

• Work is done to increase volume against the mean stress during brittle deformation,
thus the pressure sensitivity of brittle deformation.

• Ductile deformation occurs without macroscopic volume change, due to the action of
dislocations. Dislocation motion allows strain accommodation.
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Stress concentrations around defects.

In general, the stress field around cracks and other defects is quite complex, but there
are solutions for many special cases and simple geometries

Scholz gives a partial solution for an elliptical hole in a plate subject to remote uniform
tensile loading (ρ is the local curvature)
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σ∞

Crack tip stresses σ
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Full solution for a circular hole of radius r=a

σ

Malvern (1969) gives a full solution for a circular hole or radius r = a
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Bond separation and specific surface energy.

•Fracture involves creation of new surface area.
•The specific surface energy is the energy per unit area required to break bonds.

Two surfaces are created by separating the material by a distance λ/2 and the work
per area is given by stress times displacement.

This yields the estimate: .

The surface energy is a fundamental physical quantity and we will return to it when we
talk about the energy balance for crack propagation and the comparison of laboratory
and seismic estimates of G, the fracture energy.
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Can crack mechanics help to solve, quantitatively, the huge discrepancy between the 
theoretical (~10 GPa) and observed (~10 MPa) values of tensile strength?
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σ ≈2σ∞

c
ρ

For a far field applied stress of σ∞, we have crack tip stresses of

Taking σ as σt, we can combine the relations for 

theoretical strength                and surface energy

to get:
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σ t =
Eλ
2πa
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Ea
4π 2
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σ t =
Eγ
a

If we take crack radius as approx. equal to a, the lattice dimension, then setting σt, 
equal to σ at the crack tip, we have:
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2σ∞

c
a =  Eγ

a ,  which  yields:  σ∞ =  Eγ
4c

Taking σ∞ of 10 MPa, E= 10 GPa and γ of 4 x 10-2 J/m2, gives a crack 
half length c of 1 micron.  



•Griffith proposed that all materials contain 
preexisting microcracks, and that stress will 
concentrate at the tips of the microcracks

•The cracks with the largest elliptical ratios 
will have the highest stress, and this may be 
locally sufficient to cause bonds to rupture 

• As the bonds break, the ellipticity increases, 
and so does the stress concentration

• The microcrack begins to propagate, and 
becomes a real crack

• Today, microcracks and other flaws, such as 
pores or grain boundary defects, are known as 
Griffith defects in his honor


