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•Concepts of modulus and stiffness. 
•Stress-strain relations
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•Tensors, Mohr circles.  
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Overview

• Course expectations
• Web site
• Lecture Materials: Should you print 

them every time? What happens 
when we don’t finish the materials in 
a given set of lecture slides? Should 
I take notes separately or on the 
slides?

• Book
• Reading
• Problem Sets
• Project
• Presentations



Some Topics in the Mechanics of Earthquakes and Faulting

•What determines the size of an earthquake?   That is, why were the 2003 San 
Simeon & 1994 Northridge events ~ M 6.6, the 1992 Landers event 7.3 and the 2011 
Tōhoku event 9.0 ?

•What physical features and factors of faulting control the extent of dynamic 
earthquake rupture?     --Fault Area, Seismic Moment

•What is the role of fault geometry (offsets, roughness, thickness) versus rupture 
dynamics ?

•What controls the amount of slip in an earthquake?  Average Slip, Slip at a point

•Why is rise time a useful concept in earthquake rupture?

•What’s the difference between rupture velocity and particle (slip) velocity?

•What controls whether fault slip occurs dynamically or quasi-statically?    Mechanics 
of Earthquakes vs. Mechanics of Faulting



Some Topics in the Mechanics of Earthquakes and Faulting

•What factors determine the stability of frictional sliding? When does stick-slip 
occur vs. stable sliding? 

•Nucleation: How does the earthquake process get going?   

•What is the size of a nucleation patch at the time that slip becomes dynamic?   How 
do we define dynamic versus quasi-dynamic and quasi-static?   Nucleation patch: 
physical size, seismic signature

•What controls dynamic rupture velocity?   

•How do faults grow and evolve with time? 

•Ductile faulting? What happens at the base of the seismogenic zone?

•Shallow versus intermediate and deep earthquakes.

•Fault complexity and branching; 



Continuum Mechanics, Historical. (See Love, 1926).

•1638: Theory of elasticity starts with Galileo and his work on beams. For a beam
extending from a wall, how long can it be before it breaks when loaded by: its own
weight, a mass at the end?
•1660: Hooke’s law (published as an anagram in 1678: ceiiinosssttuv: Ut tensio sic vis)
•1821: Navier’s general equations (of motion for elastic materials) --also known by
Cauchy’s name.
•1860: Young (Lord Kelvin) Concept of modulus introduced.

Hooke’s law in simple form:
F = k x, where F is force, k is stiffness and x is displacement.

This was later generalized to σ = E ε, where σ is stress, E is Young’s modulus and ε is
linear strain.

In Hooke’s time the generality of strain was not understood in terms of linear and
shear components. Strain was simply referred to as “tension,” probably reflecting
the difficulty of separating the application of stress and strain in the laboratory.



Continuum Mechanics.
200 years later, Young posited the notion of modulus –in a way that made it seem to
have dropped from the sky.

In Young’s words: modulus is defined by the following statement.

…a column of the same substance capable of producing a pressure at its base which
is to the weight causing a certain degree of compression, as the length of the
substance is to the diminution of its length.

σ = F/A
ε = dl/L 
E  = σ / ε

It’s a statement that you have to read over a few times in order to get the gist of…

But with these words, Young introduced for the first time a definite physical
concept associated with the coefficient of elasticity.

Pressure at the 
base is ρgl

l ρ



Continuum Mechanics.

Think about how modulus differs from stiffness. Consider a simple experiment.
•Consider two identical springs of equal length l.

Cut one in two, so that it’s sections are of length l/2.
Although each of the three sections are of identical material, the longer one will
deform to a greater extent under a given load.

The same could be said for any material –including lengths of granite and columns of
concrete. Stiffness is a useful concept, but it is not a material property.

Seismic moment, the passage of elastic waves, the strain field around a fault, and the
velocity of a propagating rupture all depend on modulus, not stiffness.

To make things confusing, we sometimes refer to a generalized modulus as the
‘stiffness’ tensor, as in:
σij = cijkl εkl , C is the stiffness tensor, σ is stress and ε is strain.

But this is not the same as Hooke’s stiffness: F = k x, where k is a spring constant.



Why elasticity and continuum mechanics? What can we do with it in Fault 
Mechanics and Earthquake Physics?

Crack mechanics, e.g.:
What is the relationship between applied stress, expansion of the crack, and slip 
between the crack faces?

σij = cijkl εkl
σ is stress and ε is strain.



Dislocation model for fracture and earthquake rupture

Dislocation model, circular crack
For an increment of stress (Δσ), how much slip occurs between the crack faces (Δu), 
and how does that slip vary with position (x, y) and crack radius (c)

c

Relation between stress drop and slip for a 
circular dislocation (crack) with radius r

For ν =0.25, Chinnery (1969)

•Importance of slip:  e.g., Mo = µ A u
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Δu(x, y) =  24
7π  Δσ

µ
c 2 − x 2 + y2( )



Dislocation model for fracture and earthquake rupture

Dislocation model, circular crack
For an increment of stress (Δσ), how much slip occurs between the crack faces (Δu), 
and how does that slip vary with position (x, y) and crack radius (c)

c or r

Relation between stress drop and slip for a 
circular dislocation (crack) with radius r

For ν =0.25, Chinnery (1969)

•Importance of slip:  e.g., Mo = µ A u
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Body forces act on every mass element of a body. 
Surface forces, or tractions, act only along boundaries of a body.
Stress and Transformation of Stress (From One Coordinate System to Another)

In general we have 9 components of stress in 3d; and six of these are independent.
Why only 6 independent? 

Need 9 components to fully specify the 
stress state.  
These components make up a tensor.
Stress is a 2nd rank tensor.
Vector is a 1st rank tensor
Scalar is a 0th rank tensor
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Right-handed cartesian 
system and a cube of 
dimensions dx, dy, dz

Nine components of the 
stress tensor

τxx, τxy, τxz

τyx, τyy, τyz

τzx, τzy, τzz
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We can apply an independent
force to each of the surfaces.
Fy is the force on the surface 
perpendicular to the y face.  
Force is a vector, so it can be 
decomposed into it’s 
components in the x, y, and z 
directions.  

Nine components of the 
stress tensor

τxx, τxy, τxz

τyx, τyy, τyz

τzx, τzy, τzz

Convention: first index refers to plane (face
perpendicular to that axis), second index
refers to resolved direction of force, τyx, τ12
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Transformation of Stress From One Coordinate System to Another
•Resolving the applied stress onto another plane, or set of planes
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Transformation of Stress From One Coordinate System to Another
•Resolving the applied stress onto a plane, or set of planes, in a different orientation

x

y

τxy

τxx

τyxτyy

Segment dy of area: A cos α

α

Segment dx of area: A sin α

Plane P of area: A

The forces on plane A must balance those on segments dx and dy



Stress Transformationy

τxy

τxx

τyxτyy
Segment dx of area: A sin α

x

Segment dy of area: A cos α

α

Plane P of area: A
The forces on plane A 
must balance those on 
segments dx and dy

The force in a direction normal to P (σ A) has contributions from each of the four stress components:
• Force = Stress x Area
• 1) the shear force along dx is τyx A sin α and it’s component normal to P is τyx A sin α cos α

• 2) the normal force along dx is τyy A sin α and it’s component normal to P is τyy A sin α sin α

• 3) the shear force along dy is τxy A cos α and it’s component normal to P is τxy A cos α sin α

• 4) the normal force along dy is τxx A cos α and it’s component normal to P is τxx A cos α cos α

Force Normal to P:
Aσ = τyx A sin α cos α + τyy A sin α sin α + τxy A cos α sin α + τxx A cos α cos α



Stress Transformation

Force Normal to P:
Aσ = τyx A sin α cos α + τyy A sin α sin α + τxy A cos α sin α + τxx A cos α cos α

Shear Force on P:
Aτ = τyx A sin α sin α - τyy A sin α cos α - τxy A cos α cos α + τxx A cos α sin α

This can be simplified to:
Shear Stress on Plane P:

  τ = (τxx - τyy) cos α sin α + τxy (sin2 α - cos2 α)

•Stress components are a function of coordinate frame and orientation

•Principal Stresses

•Shear stresses vanish, only normal stresses

•By convention, maximum principal stress is σ1 and σ1 > σ2 > σ3 , compression is 
positive

in 2D
τxx, 0
0, τyy,

This can be simplified by eliminating A, and using τxy = τyx and
using the identity 2 sin α cos α = sin 2 α

Normal Stress on Plane P:
σ = τxx cos2 α + τxy sin 2α + τyy sin2 α



Stress Transformation

Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal
Stresses:

σ = τxx cos2 α + τxy sin 2α + τyy sin2 α

τ = (τxx - τyy) cos α sin α + τxy (sin2 α - cos2 α)
2D

τxx, 0
0, τyy,

σ = τxx cos2 α + τyy sin2 α

τ = (τxx - τyy) cos α sin α

σ = σ 1 cos2 α + σ 2 sin2 α, Normal Stress
τ = (σ 1 - σ 2) cos α sin α, Shear Stress

Use trig. identities such as cos 2α = 1 – 2 sin2α and sin 2α = 2 sin α cos α

€ 
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σ1 +σ 2( )

2
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2
 cos2α Note that these relations make use of 

the mean stress and the 
differential stress



Shear and Normal Stress on a Plane of Arbitrary Orientation --written in terms of Principal
Stresses:
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