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[1] The influence of surface roughness is central in understanding the behavior of various
types of shear zones including faults, landslides, and deformation in glacial till. All of these
systems contain a non-planar rough wall, which interacts with either a gouge zone or
another wall. We use the 3-D discrete element method (DEM) to investigate both the effect
of boundary roughness and friction. Granular non-cohesive gouge is sandwiched between
rough walls with large grooves, or smooth walls composed of spherical particles that can be
adjusted to control roughness. Roughness and gouge properties are scaled to laboratory
friction experiments. We vary friction between the particles and the wall and monitor shear
strength, height, coordination number, distribution, and orientation of particle forces,
localization, and porosity distribution in the shear zone. We find that, on the first-order,
strength is controlled by particle-particle friction and mechanical coupling of the fault zone
wall to the gouge. Rough boundaries (RMS roughness> grain radius) force more shear
within the gouge zone, dilating the layer and sliding more grains, which leads to large
stress necessary to shear the layer. When large amplitude roughness is removed, and
roughness is at the grain-scale, the coupling, and thus the strength, is controlled by both
wall and particle friction as well as fine-scale boundary roughness. These differences are
reflected in profiles of shear within the gouge zone and offset at the boundary in smooth
models. From our simulations, we quantify how and why rough natural faults will have a
higher overall strength.

Citation: Rathbun, A. P., F. Renard, and S. Abe (2013), Numerical investigation of the interplay between wall geometry
and friction in granular fault gouge, J. Geophys. Res. Solid Earth, 118, 878–896, doi:10.1002/jgrb.50106.

1. Introduction

[2] Natural fault zones are rough, non-planar features with
spatial variations of their topography ranging from microns
to hundreds of kilometers both along and perpendicular to
slip. This roughness has been measured on exhumed fault
surfaces that have recorded shear processes near the surface
[Power et al., 1987, 1988; Renard et al., 2006; Sagy et al.,
2007; Candela et al., 2009], or at depth [Bistacchi et al.,
2011]. Roughness can also be measured on the basal surface
of glaciers [Nye, 1969; Kamb, 1970; Ross et al., 2012] and
landslides [Legros, 2002; Gee et al., 2005; Davies et al.,
2006; 2010].
[3] A granular layer derived from mechanical and chemical

process in shearing layers is often observed in landslides,
beneath glaciers and in faults. Examinations of both exhumed

fault zones [e.g., Sibson, 1977; Logan et al., 1979; Chester
et al., 1985; Chester and Chester, 1998; Chester and Logan,
1986; Cashman and Cashman, 2000; Faulkner et al., 2003;
Hayman et al., 2004; Cashman et al., 2007] and faults at
depth [Heermance et al., 2003; Boullier et al., 2004; Zoback,
et al., 2010] show the presence of a gouge zone that collects
the wear particles produced by friction processes. A similar
layer is observed under many glaciers. Due to limitations of
the strain rate of ice in creep, fast motion of ice streams and
glaciers is the result of either sliding of the glacier over its
bed or shear within the frictional granular-till layer beneath
the ice, making the till-ice system analogous to faults [Kamb,
2001; Cuffy and Patterson, 2010].
[4] The role of fault zone roughness in both fault zone

strength and seismic slip is still debated. At the atomic scale,
asperity contacts have been shown to control friction
[Bowden and Tabor, 1950] and stick-slip motion [Persson,
2000]. At the fault scale, Candela et al. [2011a; 2011b]
proposed that roughness variations could control the stress
drop and slip distribution during earthquakes. The effect of
fault roughness on the heterogeneity of stress distribution
and sliding resistance within the fault zone has been
investigated by numerical means [Saucier et al., 1992;
Chester and Chester, 2000; Dieterich and Smith, 2009;
Angheluta et al., 2011].
[5] Fault zone roughness has been theorized to control

fault zone strength at depth and rupture of earthquakes
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[e.g., Pechmann and Kanamori, 1982; Sibson, 1984] and
variability in source parameters [e.g., Venkataraman and
Kanamori, 2004; Choy and Kirby, 2004; Schmittbuhl
et al., 2006]. Discrete element models in 2-D have shown
that roughness controls the local stresses and thus slip style,
e.g., stick-slip versus creep [Fournier and Morgan, 2012].
It has also been proposed that the roughness of fault planes
could control the velocity of rupture propagation, with
smoother fault showing supershear ruptures [Bouchon
et al., 2010]. Roughness controlling slip style has been
observed in laboratory experiments where smooth interfaces
were used to produce supershear ruptures [Rosakis et al.,
1999; Xia et al., 2004; Schubnel et al., 2011].
[6] Laboratory experiments on simulated faults and gouge

zones have shown that roughness influences the strength and
also the localization state, which in turn helps control
frictional stability [e.g., Dieterich, 1981; Biegel et al., 1989;
Marone et al., 1990; 1992; Anthony and Marone, 2005]. A
rough fault zone promotes the distribution of shear into the
layer and velocity-strengthening frictional behavior until shear
is localized and there is a transition to velocity weakening
[Biegel et al., 1989; Marone et al., 1990; Beeler et al.,
1996], even though some experiments have shown that
localization can occur in a velocity-strengthening sample
[Rathbun and Marone, 2010]. Laboratory studies on the
difference between rough and smooth fault boundaries have
been interpreted using granular models in two dimensions
showing that roughness controls the thickness of the active
zone and grain bridges or force chains [Mühlhaus and
Vardoulakis, 1987; Sammis and Steacy, 1994]. However,
understanding the conditions that control localization and the
interaction between the fault zone walls and the gouge are still
incomplete, particularly in three dimensions.
[7] In the present study, we investigate the role of fault

zone roughness on the strength of the gouge with fully
three-dimensional, granular discrete element numerical simu-
lations. The numerical model is calibrated using published
laboratory data of the frictional strength of granular shear
zones. Due to the inherently discontinuous nature of gouge
zones in brittle shear, we choose to use the discrete elements
method (DEM) due to the lack of dependence on a meshing
system and grid.
[8] While no model is capable of capturing all the behavior

of a natural system, the DEM is an accepted method of
investigating granular flow in physics and fluid dynamics
[see Allen and Tildesley, 1987; Pöschel and Schwager, 2005;
Radjaï and Dubois, 2011 for recent reviews of the method].
DEM has been used into investigations of numerous geologic
and geophysical studies [e.g., Saltzer and Pollard, 1992;Mora
and Place, 1994; 1998; Antonellini and Pollard, 1995;
Aharonov and Sparks, 1999; Morgan and Boettcher, 1999;
Burbridge and Braun, 2002; Finch et al., 2003; Morgan and
McGovern, 2005a, 2005b; Abe and Mair, 2009; Goren et al.,
2011; Fournier and Morgan, 2012]. DEM has been shown
to agree with laboratory experiments of sand piles [e.g.,
Morgan and McGovern, 2005a] granular experiments in
two [e.g., Knuth and Marone, 2007; Kruyt, 2003; Roux and
Chevior, 2011] and three dimensions [e.g., Silbert et al.,
2002a, 2002b; Abe and Mair, 2009].
[9] In our models, fault zone roughness is varied from

amplitude much larger than the grain scale to below the grain
scale. Additionally we investigate the role of contrasting the

frictional properties of granular shear zone with shear zone
boundaries to simulate a shear zone made of weak walls
(serpentinite, ice, clay, etc.), strong walls (quartzo-feldspathic
minerals, etc.), and walls and gouge composed of the same
material. In all models, we measure the frictional shear
strength, shear zone thickness, porosity across the shearing
layer, number of locked and sliding contacts, distribution of
shear, distribution of particle-particle force, and orientation
of contact and force vectors. The goals of the study are to
answer the following questions:
[10] 1. What is the effect of fault roughness on the overall

strength of the gouge?
[11] 2. How does this strength depend on the frictional prop-

erties of individual grains and the contrast of frictional proper-
ties between the fault wall and the gouge?
[12] 3. How is shear partitioned between sliding at the fault/

gouge interface and distribution of granular shear within the
gouge?

2. Methods

2.1. Numerical Method

[13] To model the role of boundary roughness on the shear
of granular gouge, we employ the discrete element method
(DEM) [Cundall and Strack, 1979; Mora and Place, 1994;
Place and Mora, 1999]. All models are conducted with the
open source, three-dimensional DEM simulation package
ESyS-Particle [Abe et al., 2003] (https://launchpad.net/
esys-particle/).
[14] In the model, spherical particles interact with their

nearest neighbors through frictional and brittle-elastic
interactions. Each particle is governed by using its radius,
mass, position, and linear and angular velocity. Particles carry
mass and kinetic energy and when two particles are in contact,
they are repelled based on elastic forces (i.e., Hooke’s law)
and slide based on a linear Coulomb friction law, with the
friction coefficient at particle-particle contacts, mparticle, varied
between runs. Particles can be bonded together using elastic
brittle bonds to form aggregate solid masses such as fault zone
boundaries. Bond parameters are chosen so that solid blocks
behave as a linear elastic solid [Wang et al., 2006]. More
details on the Lattice-Solid Model and its extension, ESyS-
Particle can be found in Mora and Place [1994, 1998], Abe
et al. [2003], and Wang et al. [2006].

2.2. Model Properties

[15] In all models we use a granular shear zone of length
(lx), 60 model units, initial thickness of the shearing layer
30 model units (ly), and depth of 18 model units (lz)
(Figure 1). The model is periodic in the x dimension allowing
gouge particles (red grains in Figure 1) and the moving wall to
exit one side and re-enter on the opposite side during shear. In
the front and back, two frictionless walls contain the gouge.
Shear zone walls (blue grains in Figure 1) are constructed from
bonded particles. To isolate the role of geometry and particle
friction, the bonds are not allowed to break. Gouge particles
range from 0.5 to 1.0 model units in radius with the grain size
distribution governed by a power law of exponent �4.7 from
0.5 to 0.8 and then the number of grains is constant until 1.0
(Figure 1c). The model geometry is filled with a dense packing
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of grains where each particle contacts at least four surrounding
grains using the algorithm of Place and Mora [2001].
[16] Models are sheared at a constant rate, Vx= 10

�3

model units, a similar shear rate to other DEM simulations
of granular gouge [Aharonov and Sparks, 2002; Mair and

Abe, 2008; Abe and Mair, 2009] corresponding to several
meters per second. We cast velocity into inertial number, I:

I ¼ m _g2

P
(1)

where m is the particle mass, _g is the strain rate of the active
layer, and P is confining pressure, which can be taken to be
normal stress [Midi, 2004; da Cruz et al., 2005; Koval et al.,
2009; Shojaaee et al., 2012a]. This allows our simulations to
be directly compared to other DEM work.
[17] At I≫ 1the model behaves as a granular gas and is

dominated by grain-grain collisions and inertial effects, while
at I≪ 1 the model is quasi-static with force chains created and
destroyed at equal rates. Taking an active layer of ~7 model
units (see section 3.2), our main suite of simulations are
conducted at I� 4� 10�3. We check these results by running
select simulations at I� 2� 10�4 and I� 4� 10�5. A large
shear velocity is necessary in DEM simulations to decrease
computing time while maintaining large shear strain. Reducing
Vx by a factor of 5 and 10 (I� 2� 10�4 and I� 4� 10�5)
produces similar results. For complete discussion of the role
of I, we refer to da Cruz et al. [2005] and Shojaaee et al.
[2012a] and references therein.
[18] We explore the role of boundary roughness and fric-

tional properties on macroscopic and microscopic properties
of the shear zone. To investigate the boundary roughness,
experiments are conducted with the fault zone walls
constructed from particles ranging from 0.4 to 1.0 model
units in radius following the distribution presented in
Figure 1c to produce boundaries that are rough on the grain-
scale. Additionally, some experiments contain large-scale
“saw-tooth” roughness made of the wall particles to promote
shear within the gouge and simulate a rough fault (Figures 1a
and 1b). The amplitude of the saw tooth is chosen such that the
numerical simulations could be compared to the laboratory
experiments of Mair et al. [2002], Frye and Marone [2002],
Anthony and Marone [2005], and Fulton and Rathbun
[2011]. Due to the presence or absence of grooves, the total
height varies between our geometries, but in all cases the
thickness of the gouge, H, is the same at the start of the
experiment. In models with the saw-tooth boundary, the layer
thickness is calculated from the tooth centers (Figure 1a).
Keeping the initial H constant for all models ensures that the
number of gouge particles, n, is nearly constant which allows
for comparison of steady state H, sliding contacts, locked
contacts and other parameters between models and roughness.
[19] To isolate the role of boundary roughness on macro-

scopic shear strength and how roughness changes microscopic
properties such as fabric and particle-particle force, we do not
allow the evolution of roughness and thus, the fault zone walls
are not allowed to break. In nature, this condition is not always
met, as cumulative slip tends to erode the fault walls. But other
processes, such as crack branching or wear, create roughness,
such that the walls of fault zones observed on the field always
display some morphological corrugations.
[20] To investigate the role of roughness on fault strength,

we vary m at particle-particle contacts (mparticle) and particle-
wall contacts (mwall); see Table 1 for complete list of m and
roughness conditions for each model. We explore roughness
thresholds by constructing the walls with particles smaller
than the gouge with the minimum grain radius, rmin, equal
to 0.4 and then decreasing rmin by two-fold, and four-fold
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Figure 1. (a and b) Three-dimensional discrete element
models are constructed from spherical particles, which are
bonded together to form fault walls (blue). The gouge zone
(red) consists of ~12,000 unbounded spheres, for Figure 1a
RRMS = 2.4 with large amplitude grooves and Figure 1b
RRMS = 0.58. H is given as the distance between the groove
mid-line in Figure 1a and the walls in Figure 2b. Force
(Fy) is applied equally in the normal direction to the top
and bottom walls, which are both allowed to freely move
in the y direction. Shear velocity, Vx is applied to the top
wall, while the bottom is held stationary. (c) Power law grain
size distribution for smooth and rough models. Length units
are given in terms of maximum particle radius.
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Table 1. Numerical Experiment Tablea

Name Roughness, RMS Wall m Particle m hmmacroi hHi
g282 2.4 0.1 0.1 0.303� 0.009 23.492� 0.021
g284 2.4 0.01 0.01 0.261� 0.010 22.857� 0.019
g285 2.4 0.2 0.2 0.356� 0.011 24.018� 0.018
g286 2.4 0.3 0.3 0.380� 0.014 24.324� 0.043
g287 2.4 0.4 0.4 0.404� 0.016 24.638� 0.072
g288 2.4 0.5 0.5 0.424� 0.010 24.804� 0.060
g289 2.4 0.6 0.6 0.432� 0.015 24.958� 0.061
g290 2.4 0.7 0.7 0.439� 0.019 25.084� 0.072
g291 2.4 0.8 0.8 0.448� 0.015 25.191� 0.070
g292 2.4 0.9 0.9 0.458� 0.019 25.223� 0.084
g293 2.4 1 1 0.454� 0.018 25.296� 0.081
g319 2.4 0.5 0.5 0.348� 0.011 24.061� 0.060
g320 0.58 0.1 0.5 0.317� 0.016 23.913� 0.051
g321 2.4 0.1 0.5 0.418� 0.013 24.613� 0.050
g351 0.58 0.1 0.1 0.277� 0.010 22.928� 0.013
g352 0.58 0.3 0.3 0.333� 0.012 23.668� 0.034
g353 0.58 0.01 0.01 0.201� 0.010 22.307� 0.025
g358 0.58 0.1 0.3 0.318� 0.013 23.588� 0.044
g359 0.58 0.5 0.1 0.281� 0.010 22.928� 0.019
g360 0.58 0.1 0.01 0.197� 0.011 22.314� 0.029
g361 0.58 0.5 0.3 0.344� 0.011 23.684� 0.031
g362 0.58 0.5 0.01 0.200� 0.010 22.323� 0.025
g363 2.4 0.1 0.3 0.382� 0.009 24.213� 0.051
g364 2.4 0.1 0.01 0.259� 0.010 22.883� 0.019
g365 2.4 0.5 0.3 0.384� 0.014 24.364� 0.039
g366 2.4 0.5 0.01 0.258� 0.009 22.893� 0.025
g367 2.4 0.1 0.8 0.451� 0.017 24.918� 0.056
g368 2.4 0.5 0.8 0.444� 0.015 25.133� 0.074
g369 0.58 0.1 0.8 0.307� 0.018 24.179� 0.080
g370 0.58 0.1 0.8 0.307� 0.018 24.179� 0.080
g371 0.58 0.5 0.8 0.357� 0.017 24.370� 0.062
g372 0.58 0.8 0.8 0.360� 0.017 24.379� 0.055
g373 0.58 0.5 1 0.352� 0.016 24.483� 0.079
g374 0.58 0.1 1 0.303� 0.019 24.271� 0.074
g375 0.58 1 1 0.381� 0.019 24.550� 0.059
g376_a 0.58 0.5 0.5 0.348� 0.011 24.076� 0.048
g376_b 0.58 0.5 0.5 0.348� 0.011 24.076� 0.048
g377 2.4 0.5 0.1 0.299� 0.011 23.548� 0.030
g378 2.4 0.5 0.8 0.457� 0.018 25.281� 0.069
g379 2.4 0.1 1 0.459� 0.019 25.013� 0.073
g380 0.58 0.1 0.1 0.277� 0.010 22.928� 0.013
g381 0.58 0.5 0.5 0.347� 0.011 24.061� 0.060
g382 2.4 0.5 0.5 0.425� 0.010 24.804� 0.056
g383 2.4 0.5 0.5 0.420� 0.014 24.803� 0.053
g384 0.35 0.5 0.5 0.296� 0.013 24.284� 0.061
g385 0.13 0.5 0.5 0.250� 0.013 24.414� 0.054
g426 0.35 0.2 0.2 0.270� 0.011 26.242� 0.026
g427 0.13 0.2 0.2 0.235� 0.008 23.713� 0.029
g433b 2.4 0.5 0.5 0.349� 0.012 24.047� 0.041
g469d 0.58 0.5 0.5 0.363� 0.014 23.900� 0.065
g470 0.13 0.2 0.2 0.228� 0.008 23.653� 0.031
g471 2.4 0.2 0.2 0.322� 0.019 23.253� 0.022
g472 1.6 0.5 0.5 0.400� 0.014 24.593� 0.039
g473 1.3 0.5 0.5 0.383� 0.012 25.057� 0.039
g474 1.6 0.2 0.2 0.346� 0.011 23.681� 0.041
g475 1.3 0.2 0.2 0.347� 0.018 24.147� 0.026
g476 1.6 0.1 0.1 0.293� 0.011 23.169� 0.018
g477 1.3 0.1 0.1 0.295� 0.016 23.616� 0.017
g483 0.58 0.5 0.5 0.356� 0.011 24.082� 0.039
g484 2.4 0.5 0.5 0.409� 0.012 24.778� 0.049
g485 2.4 0.1 0.1 0.328� 0.024 23.330� 0.035
g487c 2.4 0.5 0.5 0.349� 0.014 24.039� 0.032
g489c 0.35 0.5 0.5 0.320� 0.018 24.157� 0.026
g490c 0.58 0.5 0.5 0.375� 0.008 24.652� 0.046

aWhere indicated, the number in the Roughness column indicates rmin, all other values are 0.4. The wall roughness, the friction between particles, and the
friction between the particles and the walls are indicated. In all cases, shear velocity, Vx= 1� 10�3 except where denoted

bVx= 1� 10�4.
cVx= 5� 10�4.
dDenotes g= 12.
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which increases the packing, and thus decreases overall
roughness. We report wall roughness as the root mean
squared roughness, RRMS, which is the standard deviation
of the height of the wall boundary, i.e.,

RRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼0

hi � �h
� �2

vuut (2)

where N is the number of samples, hi is the measured height
along the surface at a spacing of 0.05 model units, and �h is
the mean height of the boundary.
[21] Given in units of maximum grain radius, RRMS = 2.4

for anomalously rough boundaries, with large-amplitude
grooves eight model units high, equal to those used in
laboratory experiments [e.g., Fulton and Rathbun, 2011].
Decreasing the groove height by a factor of 2 or 4 reduces
RRMS to 1.6 and 1.3, respectively. Simulations without large
amplitude grooves have an RRMS = 0.13, 0.35, and 0.58,
which is adjusted by changing the particle size distribution
in the walls. The range of RRMS from 0.13 to 2.4 model units
explores the range of a rough shear zone to smooth on the
particle scale. A full analysis of the simulations is presented
at RRMS = 0.58 and 2.4; complete roughness conditions are
shown in Table 1.
[22] While DEM models in both 2-D and 3-D [Morgan,

1999; Abe and Mair, 2009] and laboratory experiments in
multiple dimensions [Knuth and Marone, 2007] have shown
that the angularity of grains is important on shear zone
behavior, we choose to only use spherical grains and not
bond grains together. In this configuration, DEM does
capture laboratory behavior [e.g., Knuth and Marone, 2007
Abe and Mair, 2009]. This simplification allows us to run
large numbers of simulations with a large number of
particles, while still exploring the question of how rough
shear zones interact with granular gouge particles. Models
on spherical particles also allow for the comparison of our
models to the large number of laboratory experiments on
spherical glass beads, and for the calculation of force
distribution, porosity, force fabric, and other parameters all
of which are difficult with complex particles.

2.3. Scaling

[23] The model can be scaled using the grain size distribu-
tion. Because the distribution is based on a modified power
law, the scaling factor is 1/rmax of the gouge. If the largest
grain of 1.0 model unit is taken to be 100mm, a standard size
for laboratory experiments, each model length unit is then
0.1mm giving a shear apparatus of 6mm� 3mm� 1.8 mm.
For the main suite of rough fault models, RRMS= 2.4, the
grooves have amplitude of eight model units and wavelength
of 10 model units, equivalent to 0.8mm in height at a spacing
of 1mm. Throughout the paper, length units are given as the
maximum grain radius, rmax. Either the externally applied
normal force Fy, or particle-particle contact force, f, can be
cast into dimensional quantities using Young’s modulus, E,
of a grain and the nominal contact area of the experiment.
Fy is equal to 0.54 model unit and taking E= 30GPa,
normal stress in the numerical models is 15MPa, similar to
laboratory experiments on spherical glass beads.

2.4. Stress History Conditions and Strain
Measurements in the Numerical Experiments

[24] Normal force, Fy, is held constant and applied equally
to the solid walls on the top and bottom in all simulations
(Figure 1) throughout the duration of the experiment. Both
walls are allowed to move freely in the y direction to maintain
Fy. After t=150 model units, a constant shear velocity, Vx, is
applied to the top solid wall in the x direction while bottom
wall is fixed in the x dimension. This application of the
displacement condition on the top block only may break the
vertical symmetry of the numerical shear apparatus, explaining
why, sometimes, shear localization will occur closer to the
upper block and not in the center of the model.
[25] Shear velocity is then increased over t= 450 (Figure 2,

inset) to prevent the propagation of the instability from
rapidly accelerating grains. The duration of the ramp influences
the initial rapidly increasing mmacro portion of the friction curve
but has no effect beyond a shear strain, g, of 0.2. After t=600,
velocity is held steady for the duration of the experiment.
Shear strain is calculated by normalizing the incremental
displacement, x, by the instantaneous layer thickness, H, at
each time, k over the duration of the experiment, i.e.,

g ¼
XXtotal

k¼1

xk � xk�1

Hk
(3)

[26] To decrease the total time of each simulation, we
rapidly increase shear velocity and only consider the steady
state portion of the simulation. The macroscopic frictional
strength, hmmacroi, is calculated by taking the mean of the
coefficient of sliding friction at g ≥ 0.4 (Figure 2a). This
range represents the steady state portion of the friction-strain
curve for all tests and is beyond the evolution of layer
thickness and friction resulting from initial model compaction
and application of shear displacement. Small variations in
mmacro (Figure 2a) are caused by grain rearrangement and
stick-slip; this variation is reported by taking the standard
deviation about the mean of hmmacroi.

2.5. Calibration of the DEM Method on
Experimental Data

[27] For model calibration purposes and comparison to
other work, we base our simulations and scaling on the
biaxial direct-shear apparatus in the Penn State Rock and
Sediment Mechanics Laboratory [e.g., Anthony and Marone,
2005; Rathbun et al., 2008; Fulton and Rathbun, 2011].
Experiments on this apparatus have been used for comparison
to DEM models of gouge fragmentation [Abe and Mair,
2009], dimensionality of shear [Knuth and Marone, 2007],
and stick-slip [Griffa et al., 2011].
[28] Figure 2b presents laboratory data from an equivalent

system. Fulton and Rathbun [2011] conducted experiments
on 2mm thick layers of soda-lime glass beads with the grain
radius ranging from 50 to 80 mm, equivalent to our scaled
grain size, and obtained steady state friction of ~0.4 for
normal stresses in a regime where grains do not fracture. Other
studies on spherical glass beads [e.g., Mair et al., 2002; Frye
and Marone, 2002; Anthony and Marone, 2005] also present
steady state friction values (m ~ 0.44–0.47) equal to our
simulations. In these laboratory experiments grains did not
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fracture nor become angular. The variations of msliding
displayed in Figure 2b are due to stick-slip of the granular
layer in laboratory experiments. To isolate the role of
particle-particle friction and wall geometry, we do not try to
recreate the stick-slip phenomenon, but instead concentrate
on steady-sliding in which we can investigate steady state
parameters of layer thickness, friction, contact fabric and
force, and other parameters that control the strength of
shear zones.

3. Results

3.1. Fault Zone Strength

[29] We find that shear zone strength is a function of wall
geometry and friction at particle-particle contacts and

particle-wall contacts (Figure 3). For both RRMS = 0.58
and 2.4, we analyze particle-particle friction (mparticle)
from 0.01 to 1.0 for three different wall friction conditions,
mwall = mparticle, mwall = 0.1, and mwall = 0.5 representing a
gouge zone derived from the wall rock, wall composed of
weak materials, and a wall composed of strong frictional
materials, respectively.
[30] For RRMS = 2.4 (circles in Figure 3), shear zone

strength, hmmacroi, increases with mparticle with less sensitivity
to mparticle at high values. The contrast between wall and
gouge m has no effect on the overall strength with all values
of wall friction following the same increasing trend of
hmmacroi increasing with mparticle. When the saw-tooth boundary
is removed and the shear zone is only rough at the particle
scale (RRMS = 0.58), both mparticle and the contrast between
gouge and wall friction control hmmacroi. The smoother shear
zone boundary decreases fault strength at all mwall conditions.
The contrast of mwall and mparticle also influences fault
zone strength for RRMS = 0.58 boundaries. We find that when
mwall> mparticle overall strength is higher. Additionally,
for mwall = 0.1 and mparticle> 0.3 frictional strength of the
shear zone decreases slightly with increasing mparticle. We
hypothesize that the difference between shear zone strength
of RRMS = 0.58 and 2.4 boundaries and the sensitivity of
strength on mparticle in RRMS = 0.58 faults is due to differences
in coupling between the wall and gouge zone (i.e., shear at
the gouge-wall boundary), localization, and the number of
grains contributing to shear. We will explore these ideas in
the following sections.

3.2. Distribution of Shear

[31] To assess the cause of the variations in shear zone
strength in various model conditions, we explore the degree
of shear distribution in each experiment via macroscopic
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shear zone thickness, displacement and porosity profiles
across the shearing layer, and the number of particles sliding
and locked. Because each simulation starts with an equal
number of particles and shear zone thickness, direct
comparisons of steady state shearing thickness can be made.
We take the shear zone thickness, H, as the average value of
the groove-gouge interface in the simulations with grooved
boundaries and as the difference between the boundaries in
simulations without the grooves boundary (Figure 1).
[32] We find that hHi increases with mparticle (Figure 4a). As

with hmmacroi, removing the large amplitude roughness
decreasing RRMS from 2.4 to 0.58 decreases hHi. Large
values of mparticle show a systematic decrease in hHi when
mwall = 0.1. When hmmacroi is plotted as a function of hHi, a
clear trend emerges (Figure 4b). All RRMS of 2.4 models
show a linear increase of hmmacroi with hHi.
[33] The same data are presented in terms of coordination

number, Zc, the number of contacts for each particle in the
model in Figures 4c and 4d. Typically coordination number
is denoted Z; however, we use Zc to avoid confusion with the

z-dimension. We present both hHi and hZci so that the simu-
lations can be compared with both laboratory experiments
where it is impossible to observe Zc and other simulations,
which typically only present Zc. The value of hZci is
calculated starting a few grain diameters from the wall to
avoid influence of particles near the boundary contacting
the walls. Coordination number decreases from ~5.3 at low
mparticle and compacted models to ~4.1 at high mparticle and
dilated models. Care should be taken in comparing models
with and without grooves due the number of particles
contacting the wall, the particles between the grooves, and
frictional contrasts across the shearing zone. The contrasts
across the shearing zone are displayed in Figures 5.
[34] We assess the distribution of shear by constructing

a displacement profile across the layer (Figure 5). We
take the difference in the x component of position, from
the final to initial time, Δx= (xtotal� xi), against the final y
position of the particle in the layer, yf. To calculate the
profile, we bin yf into 100 equal bins and average along the
z dimension.
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[35] All experiments are sheared to total displacement
Δxtotal = 30 model units. For rough shear zones, grains
nearest to the top wall shear 30 units; however, Δx begins
to decrease within the grooves (groove tips are denoted by
black, dashed lines in Figure 5a) and progressively decreases
to zero at the bottom of the model (Figure 5a). Experiments
in the absence of grooves show offset at the particle-wall
boundary (Figure 5b), indicating a partition of slip between
shearing of the gouge layer and slip at the interface due to
low coupling. The displacement profiles show a clear trend
of decreasing displacement into the layer with mparticle. There
is a contrast in the degree of shear distribution from low to
high friction.
[36] We quantify each shear profile by taking the integral

in the y direction and comparing the integral to the triangle
that defines the possible displacement, i.e.,

s ¼

Z ymax

ymin
Δxdy

1=2HeffΔxtotal
(4)

where Δxtotal is the total displacement (30 model units in most
experiments), Heff is the thickness of the layer contributing to
shear, i.e., the difference between the maximum point of the
layer, ymax, and minimum point, ymin. In this relation, when
s=0 there is no shear in the layer and all displacement is at
the gouge-wall interface, s=1 when shear progressively
decreases from 30 at the top of the layer to 0 at the bottom,
and s=2 if the entire layer moves by offsetting at the bottom.
[37] To account for the difference between a shear zone with

grooves and without grooves (i.e., Figures 1a versus 1b),
we calculate s in grooved wall models using two end-
member situations: (1) the total height of the granular shear
zone, including particles trapped between large-scale
roughness at the top and bottom of the shear zone as closed
symbols in Figure 5c and (2) the zone between the groove
tips (dashed lines) as open symbols in Figure 5c. For both
RRMS = 0.58 and 2.4 boundaries, the quantity of s is less than
1, indicating decreased shear away from the moving upper
wall. In both cases, s decreases with mparticle indicating more
localization of shear near the upper boundary with high
mparticle. For RRMS = 0.58, mwall and mparticle contribute to the
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profile of shear (Figure 5d). Low mwall induces less shear in
the layer because it is more efficient to displace at the wall-
particle boundary. For RRMS = 2.4, the geometry and mparticle
control local Δx, with all mwall values producing the same s.
In all cases, high mparticle enhances localization near the
top boundary.
[38] To further assess the distribution of shear, we present

the number of sliding and locked contacts as a function of
height across the layer. Figure 6 presents representative
simulations for RRMS = 2.4 (Figures 6a and 6b) and
RRMS = 0.58 (Figures 6c and 6d) boundaries, both at
mwall = mparticle = 0.5. As with the shear profiles, the data are
binned in the y dimension and the number of contacts that
are sliding and locked are counted at intervals of 3000 time

steps beginning at t= 300 (Figure 6). Sliding contacts are
defined as any particle that overcomes its Coulomb criterion,
irrespective if that failure is via sliding or rolling. Starting at
t = 300 allows investigation of the layer before the initiation
of shear, but after the application of normal force. Because
the layer is compressing in the normal direction, the trend
contains two humps near the boundaries. Once displacement
of the walls begins, this trend disappears and many more
grains are in contact. For both RRMS = 2.4 (Figure 6a) and
RRMS = 0.58 models (Figure 6c), the number of locked
contacts increases with distance from the top, shearing wall.
The number of locked contacts increases to ~7.5 model units
from the top groove in models with grooves or top wall in
models absent of high amplitude roughness. Beyond a
distance of 7.5 model units the number of locked contacts
stays approximately constant with depth. A slight evolution
is present with time with the number of locked contacts
increasing with time from t= 3300 to t=27,300. This temporal
difference is more apparent in the sliding contacts (Figures 6b
and 6d). At t=3300 more contacts are sliding over the entire
thickness than at t=27,300 with a progressive decrease in
time. The absolute number of sliding and rolling contacts
decreases with depth from the top lowest extent of the wall
after the first ~7.5 model units
[39] The evolution of sliding and locked contacts, both in

time and space helps to explain the displacement profiles
presented in Figure 5. The amount of Δx rapidly decreases
with depth in the model until ~7.5 model units and is
then near zero. This is reflected by the increasing number
of locked contacts to this depth and decreasing number
of sliding contacts. Additionally, the temporal transition of
locked and sliding contacts corroborates shutting down of
shear in the lower portion of the shear zone and more
localization of shear near the top boundary. Note also that
this asymmetry comes from the loading condition and
sliding style. Shear velocity is imposed on only the top
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block, breaking the vertical symmetry of the system. In thin
shear zones relative to the groove height and particle radius,
shear would be distributed over the entire thickness because
the decay of Δx as a function of distance from the shearing
wall cannot be manifested. In these simulations, the shear
zone is tens of particles thick allowing shear to localize.
Calibration models in which both walls were sheared
contain vertical symmetry.
[40] Initial porosity, f = 0.56, is high due to the narrow

grain size distribution. As evidenced by the decrease in layer
thickness from t= 0 (Figure 2), f initially decreases in time
as normal stress is applied. As with the trends of hmmacroi,
hHi, and the number of sliding and locked contacts, f
becomes steady with time or strain shortly into the model
(Figure 7). As with both the number of sliding and locked
contacts, porosity is plotted at multiple times to show the
natural variation in the system. Because the number of
shearing particles varies as a function of y position, f varies
as a function of height across the layer facilitating dilation
across the layer and the need for particles to rearrange
(Figure 7). Porosity decreases by ~0.04 in the first 7.5 units
from the top groove (or wall in RRMS = 0.58 simulations).
Beyond 7.5 model units, f stays near constant across
the layer.

3.3. Particle-Particle Force

[41] Microscopic force parameters are quantified by
investigating the magnitude of the force between two particles,
orientation of the contacting grains, and the orientation of the
force between the grains. Force fabric and magnitude statistics
are analyzed for all frictional (gouge) particles in the model
through one simulation and by comparing mean values of
one simulation to another.
[42] To investigate the force chain fabric, two populations

of contact forces are considered, grain-grain contacts above
the mean force of all contacts ( f/kfk> 1) termed “strong con-
tacts” and “weak contacts” below the mean force (f/kfk ≤ 1)
[Radjaï et al., 1996; 1998]. Strong contacts have been
hypothesized to be part of force chain networks, a long-lived
collection of contacting grains that can branch across the
layer, while the weak contacts act to buffer and support the
chains [Radjaï et al., 1996, 1998; Aharonov and Sparks,
2004; Mair and Hazzard, 2007].
3.3.1. Force Magnitude
[43] The magnitudes of particle forces, f, are quantified for

the overall average force and the distribution of the force
magnitude. The mean force, kfk, is calculated by averaging
the norm of force vector between contacting particles for
each contact in the simulation. The distribution of the force
magnitudes follows a probability density function (PDF) that
is well fit by an exponential (Figure 8a)

P fð Þ / e�b f
fk k (5)

where f is normalized by kfk [Liu et al., 1995]. We calculate
P(f) using (5) at 100 times in the model for forces 1< f/kfk ≤
7. The fit range represents values over the mean, which is
expected to be in force chains and ignores any anomalously
large forces, which may be present on one grain, i.e.,
Figure 8a.
[44] From f/kfk of 1 to 7, an exponential decrease in force

is observed and described by the slope b. For the weak

contact network (f/kfk ≤ 1), the exponential relation (5) no
longer holds. The value of kfk rapidly increases to near
steady at small g (Figure 8b). Variations in the macroscopic
parameter mmacro are reflected in kfk, albeit as small
fluctuations. As with kfk, b reaches a steady value at low
g. While the variations of mmacro are not reflected in kfk,
large variations in b are observed (Figure 8c).
[45] To compare experiment-to-experiment variation, h f i

is defined as the mean of kfk for all particle-particle contacts
at g> 0.4. Experiments with RRMS = 2.4 have a larger value
of h f i than experiments with RRMS = 0.58 (Figure 9a). We
find that h f i increases with mparticle in all cases. Wall friction
has little to no influence on h f i when RRMS = 2.4, while there
is a systematic variation RRMS = 0.58. The constant value of
h f i for RRMS = 2.4 at various mwall indicates that the normal
(elastic) force is the dominant intergranular force, not the
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shear component of intergranular force. The variation in b and
the large standard deviation make analyzing the distribution of
forces from the probability density function (Figure 9b)
difficult; however, some systematic trends do emerge. The
force distribution is constant with mparticle above 0.3 when
considering the uncertainty in b (Figure 9b). Also, rough walls
tend to promote a large hbi and h f i at each friction condition
indicating that more of the overall force is contained in the
high force network. This indicates that mean force in the
model is large; however, a smaller proportion of grains have
large forces acting on them and the high force network is
supported by fewer contacts.

3.3.2. Contact Fabric and Force Orientation
[46] Particle contact orientation is quantified using a polar

histogram of each contact and fitting a function around the
histogram using the method of Rothenburg and Bathurst
[1989]. The orientation vector between the center of mass
of two contacting particles (e.g., Figure 10) is written in
polar terms in the x-y and x-z directions. The angular
distribution of contacts, E(θ), is described by using the
second Fourier component of E(θ), i.e.,

E θð Þ ¼ 1

2p
1þ a cos2 θ� θað Þf g (6)

where a defines the magnitude of anisotropy, and θa is the
direction of anisotropy. A complete explanation of the
method can be found in Rothenburg and Bathurst [1989].
[47] As with the analysis of b, we threshold above and

below f/kfk= 1 and report a and θ as aw, θw and as, θs for
weak and strong contacts, respectively.
[48] Figure 11 displays the calculation of aw, θw, as, and

θs. The polar histogram represents all contacts at the mid-
time of experiment g383 with the fit of equation (6) for each
family of contacts in the x-y and x-z directions. Weak
contacts are near isotropic in the x-y direction with
aw=0.058 and θw=47.6� while strong contacts are anisotropic
in the x-y direction with as=0.49 and θs=50.1�. When a=0,
the fabric is isotropic with equation (4) producing a circle
and thus the value of θw has little meaning. Weak contacts
are isotropic in the x-z direction in all cases (Figure 11b).
Strong contacts preferentially align into the shear direction.
Beyond a few degrees from the shear direction in x-z space,
contacts are isotropic.
[49] Contact fabric is quantified at 100 temporally equal

spacing for each experiment in the x-y direction. As shear
initiates and friction rises, θs rotates from the normal
direction at ~90� to a steady value at ~50� (Figure 12a).
The rotation of contact orientation is accompanied by an
increase in as from ~0.3 to ~0.48 (Figure 12b). Weak contact
fabric increases in anisotropy from near 0 to between 0.05 and
0.1 and retains a large number of contacts in all directions
(Figure 12d).
[50] Mean values of contact fabric are computed at g> 0.4

for each simulation (Figure 13). For strong contacts, hasi is
larger in simulations with RRMS = 2.4 boundaries. In
RRMS= 0.58 models, the value of mwall influences anisotropy.
The value of mparticle has little overall effect on hasi (Figure 13a).
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Figure 10. Two-dimensional example of the contact
network. Solid circles and bold lines represent strong force
contacts that are aligned in the θs direction. Sense of shear
is top to the left.
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Orientation of contacts is slightly more shear normal position
with increased mparticle (Figure 13b). Boundaries ofRRMS=0.58
also have a more shear normal orientation by a few degrees
than RRMS=2.4. The weak contact fabric anisotropy increases
with mparticle; however, the network remains nearly isotropic for
all models (Figure 13c). Boundaries with RRMS=0.58 are
systematically more isotropic than rough boundary models.
The orientation, hθwi displays a large difference between
RRMS= 0.58 and 2.4; however, the small value of hawi
indicates that large numbers of weak contacts are present in
all orientations. The anisotropy of contact networks for strong
forces indicates that few of the high force contacts occur at
angles larger or smaller than hθsi. This implies that the force
chain network f/kfk> 1 exists almost exclusively in the
direction of hθsi.
[51] Similar to contact orientation, the orientation of normal

component of the interparticle force can be quantified by

�f n θð Þ ¼ �f 0 1þ an cos2 θ� θf
� �� �

(7)

where �f n is the mean normal force between particles, an is
the anisotropy of the normal force, and

�f 0 ¼
Z 2p

0

�f n θð Þdθ (8)

[Rothenburg and Bathurst, 1989]. Values and trends of hani
and hθfi track hasi and hθsi indicate that most of the force
that supports the grain network is oriented perpendicular to
grain contacts, in the grain normal direction.

3.4. The Role of Fault Zone Roughness on Strength and
Force Parameters

[52] To further elucidate the role of fault zone roughness
on strength and particle-particle force, additional simulations
with varied RRMS were analyzed. The size of the grooves is
decreased from eight model units to two and four model
units, or RRMS = 1.3 and 1.6, respectively. To construct shear
zones that are smooth to the particles, the range is increased
between the maximum and minimum radius of the grains
that construct the walls. In all cases, the rmax is constant at
1.0 unit and rmin is decreased. In the main suite of
experiments comparing grooved walls and smooth walls,
rmin is 0.4 which yielded RRMS = 2.4 and 0.58 with and
without grooves, respectively. The rmin is decreased to
0.25 and 0.125 increasing the packing and thus decreasing
RRMS to 0.35 and 0.13, respectively.
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[53] The lack of coupling between the wall and granular
shear zone decreases the overall strength via offset at the
wall-gouge boundary. As RRMS decreases in simulations in
the absence of grooves, fault zone strength decreases
linearly for a given mparticle (Figure 14a). Roughness controls
the slope of the trend and mparticle controls the intercept.
Above a critical RRMS, the linear trend breaks and the
contribution of mparticle becomes the controlling factor in
strength with RRMS having little to no influence. The
transition corresponds to near the radius of the median particle
size of the gouge (Figure 14a).
[54] Displacement profiles across the shearing zone

highlight the differences caused by boundary roughness
(Figure 14b). Below RRMS = 1, displacement profiles are
dependent on wall roughness with significant offset between
the wall and gouge zone. In all cases, the wall is displaced a
total of 30 model units; however the largest amount of
displacement in the gouge depends on mparticle and more
importantly on RRMS. When analyzing mparticle = 0.5, the
maximum displacement in the gouge decreases from 21.2
at RRMS = 0.58, the roughest boundary without grooves, to
15.0 and 11.5 at RRMS = 0.35 and 0.13, respectively (Fig-
ure 14b). Cast into terms of s, these trends represent 0.21,
0.15, and 0.10 from roughest to smoothest. All three
conditions with large boundary roughness due to the presence

of a grooved wall (RRMS of 1.3, 1.6, and 2.4) have no offset
between the wall and gouge zone, and thus a negligible
difference in shear zone strength (Figure 14a).
[55] Decreasing RRMS elucidates trends in grain contact

orientation and force chains. Using equation (4) to analyze
the orientation of strong contacts, we show that roughness
increases the anisotropy factor hasi (Figure 14c). Simulations
without grooved boundaries (RRMS< 1) produce a near linear
decrease of hasi with RRMS. Adding grooves, and roughness
to the shear zone, increases hasi indicating that more grain
contacts are orienting into a preferred direction with less
branching in the force chains. The factor hasi, becomes
insensitive to RRMS above 1. A slight decrease in anisotropy
occurs due to the contacts between the large amplitude
grooves at RRMS= 2.4.
[56] Orientation of the strong contacts rotates into the

shear direction with increased fault zone roughness
(Figure 14d). Because strong contacts support the jammed,
non-shearing network of contacts [Radjaï et al., 1998;Walsh
et al., 2007], it is expected that a jammed network would
have a high angle, closer to the direction of the normal force.
In the simulation of RRMS = 0.13 and mparticle = 0.5, the
preferred orientation is hθsi= 57.5�. The angle θs decreases
systematically as the fault zone roughens and is ~50� at
RRMS = 2.4.
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4. Discussion

4.1. Roughness and Frictional Coupling

[57] The coupling of the shear zone wall and granular
layer causes the differences in strength with different RRMS.
Coupling is controlled by two factors, albeit in different
proportions. First, the dominant fault zone geometry and
second, fault zone friction between the gouge-gouge and
gouge-wall interactions. When a fault is anomalously rough,
RRMS> 1 (the maximum grain radius) in these simulations,
the wall is well coupled to the gouge and gouge properties
control behavior. The large amplitude roughness necessitates
that all the deformation occurs within the shearing layer and
not at the gouge-wall interface with no offset between the wall
and the gouge (Figure 5). Due to large roughness, any
difference between the friction of the wall and gouge is largely
unimportant to the overall strength because the normal
(elastic) force between the wall and gouge controls behavior.
When large amplitude roughness is removed and the shear
zone is only rough on the grain-scale, the tangential force, wall
friction, becomes a controlling factor in determining whether
the fault and gouge are coupled together.
[58] Shojaaee et al. [2012b] simulated 2-D disks between

infinitely smooth walls and vary both mparticle and mwall. Their
results quantitatively agree with our simulations that

hmmacroi becomes insensitive to mparticle at values ~0.7. The
wall offsets at the boundary the granular shear with values
of mwall controlling the amount of offset. At extremely low
mwall and an infinitely smooth wall, no shear occurs in the
granular layer [Shojaaee et al., 2012b]. Shojaaee et al.
[2012b] find that, as the wall roughness increases, frictional
strength of the system increases and eventually becomes
independent of roughness, agreeing with our simulations
(Figure 14a).
[59] Our results of roughness and asperities controlling the

strength of a system agree with well-known engineering
relations of roughness and friction on bare surface
experiments [e.g., Bowden and Tabor, 1950]. Experiments
on diamond coatings show that friction increases with
roughness and that as wear is produced, the roughness is
decreased, dropping the strength [Hayward et al., 1992].

4.2. Comparison to Laboratory Strength
Measurements

[60] Simulations of rough boundaries and spherical
particles reproduce the strength measured in the laboratory
[Abe and Mair, 2009]. Our simulations capture the frictional
strength of spherical glass beads with rough boundaries
[e.g., Mair et al., 2002; Frye and Marone, 2002; Anthony
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and Marone, 2005; Fulton and Rathbun, 2011]. Previous
studies on 3-D DEM have failed to capture the behavior
of laboratory experiments of spherical beads and machine
polished smooth steel [i.e., Anthony and Marone, 2005].
Progressively decreasing the roughness of the fault
(Figure 14) shows a linear decrease of strength with
roughness. If the data are extrapolated to a theoretical
shear zone that is infinitely smooth, simulations suggest
that the strength is hmmacroi� 0.15, equal to mmacro� 0.13
reported by Anthony and Marone [2005] when using
mwall = mparticle = 0.1 as suggested from the experimental
data of Frye and Marone [2002].

4.3. Overall Shear Zone Strength and the Role of
Shear Distribution

[61] Frictional strength, hmmacroi, varies as a function of hHi,
or hZci (Figure 4). Since the main suite of the simulations
starts with the same layer thickness, number of particles, and
packing of the wall, the overall thickness of the layer during
shear reflects differences at the microscale in the gouge.
Comparing values of hHi with local porosity (or coordination
number) across the shearing layer shows that the degree of
dilatancy is high close to the moving boundary and transitions
to packed or jammed state far from the boundary. We find
that there is a trade-off between hHi and the degree of
localization, s.
[62] High mparticle leads to more localization of shear near

the boundary and lower s, because it is more efficient to
shear a few grains rather than mobilize a large number of
high mparticle contacts. This leads to enhanced shear in the
boundary and increased dilation. High dilation is manifested
as high f or low Zc, in the zone and a larger overall hHi. The
value of Zc is lower in the actively shearing portion of the
layer, than in the locked contacts and the bottom of the
shear zone.
[63] The DEM simulations in 2-D show that Zc decreases

with increased mparticle [Morgan and Boettcher, 1999; da
Cruz et al., 2005; Makedonska et al., 2011; Shojaaee et
al., 2012a] and simulations in 3-D yield equivalent Zc values
as our simulations [Silbert et al., 2002a]. Marone et al.,
[1990] proposed a simple work balance based on a linear
relation of friction and dilation based on shear experiments
with angular gouge. Makedonska et al. [2011] defined fields
where the linear relationship of hmmacroi and hHi (or hZci) is
expected to break due to transitions of styles of grain motion
such as particle rolling. As shown in the models of
Makedonska et al. [2011], high friction particles prefer
rolling, while low friction particles move by a combination
of rolling, sliding, and distribution of shear. In our
simulations, we find that frictional strength is linear with
coordination number over the range of all values for rough
boundaries. In smooth boundary simulations, frictional
strength is lower than rough boundary simulations for the
same coordination number due to grains near the boundary
preferentially rolling at high mparticle distributing less shear into
the layer (Figure 5), and promoting offset at the boundary of
the gouge and wall. We do not consider the change in f
or Zc with strain in these simulations and second-order
friction variations. For a complete discussion of the role of
changing Zc and m, please see Marone et al. [1990] and Mair
and Abe [2008].

4.4. Displacement Profiles

[64] Shear profiles show enhanced displacement near the
moving boundary. Similar profiles are observed in 2-Dmodels
of Aharonov and Sparks [2002] and 3D models of Mair and
Hazzard [2007]. The models of Mair and Abe [2008] present
similar shear profiles to our simulations, but the models are not
directly comparable due to large amounts grain fracture of the
gouge. Additionally, our observed profile is common in
laboratory experiments of granular shear at low stress and high
strain rates [e.g., Pouliquen and Gutfraind, 1996; Veje et al.,
1999; Losert et al., 2000; Mueth et al., 2000; Bocquet et al.,
2002; Tsai and Gollub, 2005; van der Elst et al., 2012]
showing what can be approximated as an exponential decay
of shear velocity of displacement going away from the moving
boundary. The shape of the shear profile is also determined by
I, which is discussed in the next section.
[65] Some laboratory experiments have shown a discontin-

uous shear zone, with boundary shears near the moving wall
at high stress and grain breakage [Logan et al., 1979; 1992;
Mair et al., 2002] or distribution of shear across the layer.
Sazzard and Islam [2008] present 2-D DEM in biaxial
compression, with a decrease in the number of sliding contacts
with increased particle friction consistent with our observa-
tions that high friction leads to jamming of the shear zone
away from the moving boundary.
[66] If we move both upper and lower walls, effectively

decreasing the shear zone thickness by a half, our profiles
show a more distributed shear system because the number
of sliding contacts has not decayed across the layer. Our
simulations present the movement of only one wall for easier
comparison to laboratory experiments, which only move
one wall.

4.5. Role of Shear Strain and Velocity

[67] When the shear zone velocity is decreased in our
simulations the curvature of the shear profiles decreases
and the profile resembles continuous, distributed shear over
the entire layer. Shojaaee et al. [2012a] show that the shape
of the shear profile is dictated by the inertial number, I,
(Equation (1)) in smooth wall simulations. As I decreases,
and inertia becomes less important, profiles have less
curvature and shear becomes distributed over the entire
layer. The simulations of Aharonov and Sparks [2002]
suggest that the behavior transition from the profiles
presented in Figure 5 is reminiscent of a fluid to discontinuous
profiles and shear banding near the boundary with increased
pressure, or with decreased thickness. In the case of our
simulations at Vx=1� 10�3, 2� 10�4, and 1� 10�4

(I� 4� 10�3, 2� 10�4, and 4� 10�5) for RRMS= 2.4 and
mparticle = 0.5, h mmacro i is indistinguishable within experiment
uncertainty. At both RRMS= 0.35 and RRMS= 0.58 with
mparticle = 0.5, and Vx=1� 10�3

, or 2� 10�4, hmmacroi is equal
within variability (Table 1). Simulations at Vx=1� 10�3

show no change in hmmacroi to g =12. Both da Cruz et al.
[2005] and Shojaaee et al. [2012] find that hmmacroi increases
with increasing I over many orders of magnitude, the
velocity-strengthening situation.

4.6. Force and Fabric Network

[68] The trend of the force-probability relationship for the
strong contact network, i.e., Figure 8, agrees with the
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experiments of Majmudar and Behringer [2005] that
shearing or weakly jammed systems show an exponential
decay in the PDF. The value of b tends to follow shearing
rate [Behringer et al., 2008] in 2-D systems. For the few
3-D simulations carried out, force distribution is consistent
with an exponential, Equation (5) [Silbet et al., 2002a,
2002b;Mair andHazzard, 2007]. The slope of the exponential
has been shown to change slightly with tilt angle for particles
sliding on a ramp, with interparticle forces to eight or
more times the mean force [Silbert et al., 2002a, 2002b].
No systematic variation of b with RRMS is present in our
simulations, indicating the same probability density function
describes the large force interactions for any roughness. We
do find a slight dependence of b on mparticle< 0.5.
[69] Simulations of shearing granular media in 3-D

have shown the orientation of contacts at ~50� for 3-D
simulations [Mair and Hazzard, 2007] for the high force
contacts. In the 2-D simulations of Aharonov and Sparks
[2004], high forces orient at ~45� with the orientation
rotating during the stick-slip cycle. This rotation explains
the large standard deviation observed in our contact
orientation. As mmacro varies during shear, the orientation
of θs varies slightly from 48.5� to 50.5�. Even with the large
standard deviation relative to the differences in measured
contact orientation, there is a consistent increase of
orientation with increased mparticle for both RRMS = 0.58 and
2.4 (Figure 13). As mparticle increases, the preferred orientation
rotates closer to the normal direction. Additionally, low RRMS

models display higher hθsi than high RRMS models, as
discussed in section 4.2. The trend of contacts aligning
perpendicular to the shear direction with increasing mparticle is
in agreement with less overall contacts participating in shear
at high mparticle. Anisotropy of high force contacts has no clear
trend with mparticle due to the large standard deviation. As
shown in Figure 14, anisotropy of the contact network does
vary systematically with roughness. In all simulations the
network of weak forces is nearly isotropic (Figure 13). Similar
to the 3-D simulations of Silbert et al. [2002b], only a small
variation in contact fabric is observed. The systematic trends
of a and θ in Figure 13 are confirmed by the values of a and
θ in Figure 14 with progressively decreasing roughness. In
both cases, the values of a and θ are the result of the proportion
of sliding versus locked contacts, with less sliding contacts
promoting less anisotropy and a fabric network oriented closer
to the shear normal direction.
[70] Systematic variations of both hawi and hθwi exist even

though the values of hθwi have little meaning due to the
isotropic nature of the weak contacts. Weak contacts do
become slightly more anisotropic with increased mparticle
but in all cases, large numbers of grains contacts are present
in all directions. The nearly isotropic weak contacts and
extremely anisotropic strong contacts reflect which grains
are sliding and which are locked and keeping the layer
dilated. Strong contacts tend to align ~50� to the shear
direction with few contacts at angles normal to shear or
greater. This reflects that almost the entire strong contact
network is locked and not sliding. If a large force were
present and tangential to the grain contact, sliding would
dissipate this force. Conversely grains participating in shear
tend to be in the weak contact network. Because these
particles are dilating and sliding over one another, contacts
are present in all orientations.

[71] Other models have shown that the weak contact
network can have a preferred orientation, particularly in
stick-slip situations [Aharonov and Sparks, 2004]. Aharonov
and Sparks [2004] proposed that the weak contact
network buffers the strong contacts and force chains that
resist shear. It is unclear if the difference in the weak contact
network in our simulations is due to the lack of stick-slip or
that our simulations are in 3-D and produce a more
complicated network.
[72] Based on the idea that stick-slip sliding in granular

media is the result of catastrophic buckling of force chains
[e.g., Morgan and Boettcher, 1999], the high anisotropy
and rotation of contact networks toward the shear direction
indicate that simulations with rough boundaries could be
less stable. The weak contact network is important in
supporting strong contacts and force chains [e.g., Aharonov
and Sparks, 2002; 2004]. In simulations where the weak
network is dispersed at all orientations, the strong contact
fabric could be unsupported leading to buckling [Aharonov
and Sparks, 2002]. Our simulations do not present stick-slip
due to the nearly infinite stiff loading system. With a three-
dimensional shear zone, force chain networks are complex
and promote stability.

4.7. Application to Natural Systems

[73] While our simulations are a vast simplification of
any natural system without important components such as
pore pressure, fluids, and grain shape, simulations do help
elucidate the conditions that help lead to offset between the
gouge and fault zone wall and how roughness helps to
control the overall strength of a shear zone.
[74] Many natural systems include frictional sliding

between a solid wall and granular shear zone, with offset
between the wall-grains or deformation in the granular zone.
Often natural systems include dissimilar materials in
frictional contact. For example, large displacement faults
often juxtapose different materials into contact. Glaciers
can move by sliding of ice over the bed, or deformation
within a till layer [Cuffy and Paterson, 2010] where
dissimilar frictional materials are in contact with a low
friction ice wall (which may or may not have debris
entrained interacting with the particles beneath) and higher
friction granular layer. Fault zones often contain a clay
gouge zone, even in the presence of quartzo-feldspathic
walls, a system of high friction walls and low friction
particles [Vrolijk and van der Pluijm, 1999]. Finally, immature
faults consist of fractured rocks producing wear material and
gouge from the walls. In our simulations, when the roughness
is large, a combination of wall roughness and grain friction
controls behavior. As the roughness increases wall friction
becomes more important.
[75] Natural fault zones often record displacement

between the gouge zone and wall in the form of polished
walls and other deformation markers. It has been proposed
that a scaling break might be present with mature faults
(i.e., faults with>10m offset) showing less overall roughness
than immature low total slip faults [Sagy et al., 2007; Brodsky
et al., 2011]. While the idea that a break in the roughness
scaling is not clearly observed for faults with larger
accumulated slip [Candela et al., 2012], our results imply that
a smooth fault could have less overall strength than a rough
fault zone.
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[76] The discrepancy between measurements of the
critical slip distance in laboratory experiments and seismology
has been attributed to the different roughness at the laboratory
and fault scale [e.g., Scholz, 1998; Biegel et al., 1989;Marone
et al., 1990]; however, the standard interpretation of the
critical slip distance is the slip needed to renew the shearing
contacts with the thickness of the shearing zone controlling
the length scale [e.g., Marone and Kilgore, 1993; Marone,
1998; Rathbun and Marone, 2010]. This implies that
roughness should only be important in cases where shear
occurs between the boundary and gouge, or where roughness
controls the thickness of the localized, active shearing zone.
While our simulations consider stable sliding to investigate
fault zone strength and as we do not investigate the transition
from steady state sliding at one velocity to another, we do
find that roughness and thus coupling of a fault to the gouge
zones influences the number of sliding contacts, one of the
factors that controls critical slip distance [Marone and
Kilgore, 1993].
[77] In fast moving glaciers and ice streams, either sliding

over a substrate composed of rock, or till; or deforming of
the till layer is preferred to the creep, or regelation of ice.
The roughness of the rock or till layer holds back the
overriding ice sheet forcing ice to creep or regelate around
bumps, both inherently slow processes. If the roughness of
the glacial bed is low and ice slides, it may lack pinning points
and lead to fast motion [Kamb, 1970]. Our simulations suggest
that a glacier with a smooth bed would tend to slide over a
basal till layer rather than deform that layer. In our simulations
of low friction walls with high frictional particles, the situation
most similar to glaciers, there is large offset at the wall-particle
boundary and sliding is preferred to deformation of the layer.

5. Conclusion

[78] Three dimensional discrete element models on spherical
particles sheared between rough (RRMS>maximum grain size)
or smooth walls (RRMS<maximum grain size) accurately
capture the behavior of laboratory experiments. The variation
of fault zone strength with wall roughness and the frictional
interactions between both fault gouge and fault zones walls
is systematically investigated. The strength of the fault
zone is controlled by both the frictional interactions and
roughness. For both rough and smooth faults, shear strength
of the fault zone increases with friction between particles
with sensitivity to particle friction decreasing at high friction.
[79] For rough faults, the fault zone walls are coupled to

the gouge zone, with only the gouge friction controlling
strength. The wall and gouge are well coupled and any
contrast of properties is unimportant. When large-scale
roughness in the form of high amplitude grooves is removed
and the fault zone is only rough at the particle scale, strength
is controlled by a combination of wall friction, gouge
friction and fine-scale roughness of the wall. In this case,
strength is a linear function of roughness, with the friction
coefficient controlling the intercept of the trend. Because
the coupling of the wall is partially controlled by the friction
of the wall, the contrast between wall and gouge properties
plays a large role in determining the strength. Low wall
friction promotes offset at the boundary between the gouge
and wall and lower overall strength. High wall friction
necessitates shearing of more gouge grains, requiring more

stress to move the fault. For both smooth and rough fault
models, the distribution of the particle-particle force obeys
an exponential law above the mean particle force in the
model. Grain contact orientation shows strong anisotropy
in high force contacts at ~52� to the shear direction with
the angle increasing with both particle-particle friction
and roughness. Low force contacts are nearly isotropic in
all cases.
[80] We suggest that the differences in strength are due to

the thickness of the actively shearing zone and in particular,
offset at the boundary. Rough faults force more deformation
to occur in the fault zone, which requires more overall work
to shear the fault. When the large roughness is removed,
shear distribution is controlled by the difference between
wall and gouge friction. These results imply that a smooth
fault has a lower overall strength than rough fault if offset
at the gouge-wall interface is possible. Strength differences
are reflected in the macroscale measurement of shear zone
thickness, and the correlation of shear zone thickness with
model strength, coordination number, and finally the
microscale controls of these values such as the number
of sliding and locked grains, particle motion, and the
manifestations of these, local porosity.
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