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The general principles of equilibrium thermodynamics are briefly stated in a form 
conveniently applicable to nonhydrostatic problems, i.e., with emphasis on the aspects, 
absent from hydrostatic applications, that have sometimes caused confusion. The 
importance of taking into account fully and clearly the constraints involved in a 
particular problem and of treating the work term very carefully in considering an 
energy variation are particularly emphasized. For illustration the following problems 
of geologic interest are treated: (1) equilibrium between a stressed solid and its solu- 
tion, including the 'pressure solution' problem; (2) recrystallization under stress and 
the resulting crystallographic preferred orientation in aggregates; (3) coherent phase 
transitions under stress; and (4) diffusion in a stressed solid. 
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A. INTRODUCTION 

This paper aims to review, critically but in • fairly elementary way, the 
application of thermodynamics to systems in which nonhydrostatic stresses in 
the solid phases are of importance. In both geologic field studies and experi- 
mental work the question of the influence of stress on the development of 
particular assemblages, features, or fabrics has often been raised and has led to 
• substantial literature on what is often referred to, for brevity, as 'nonhydrostatic 
thermodynamics.' The topic is, of course, of much wider interest and has often 
entered into metallurgical discussions, but the present review has been assembled 
with the geologic applications in mind. Geologic applications that have been 
suggested include (1) 'pressure solution' phenomena, (2) recrystallization under 
stress, (3) phase transitions, (4) diffusion in a stressed solid, and (5) other, 
more specialized applications. 

1. Pressure solution phenomena, which are most familiar in sedimentary 
or low-grade metamorphic rocks, include the indentation of one particle into 
another, the formation of stylolites, the truncation of fossils, and the formation 
of 'pressure shadows.' Some of these occurrences were already well known by 
the time of $orby [1863, 1879], and it would be inappropriate to attempt a 
comprehensive listing of publications here. Many papers are referred to by 
Trurnit [1968]; other recent papers include those by Plessmann [1966], Dun- 
nington [1967], Glo.ver [1968, 1969], and Durney [1972]. Similar notions have 
from time to time been carried over into discussions of the deformation of rocks, 
when overall change of shape is attributed to local solution and redeposition 
under the influence of stress [e.g., Ramsay 1967, pp. 195, 226, 249]; the detailed 
physics of the deformation process is usually not very clearly stated, however, 
and the definition of the relative roles of cataclastic, crystal-plastic, and dif- 
fusion-type (including solution-redeposition) deformation mechanisms remains 
one of the major problems in rock deformation. There have also been suggestions 
that the development of small-scale structural features such as some types of 
crenulation cleavage and slaty cleavage has involved differential solubility 
under stress [e.g., Plessmann, 1964, 19'66]. 

2. Recrystallization under stress may include 'syntectonic' recrystalliza- 
tion, although the deformational aspects are often not discussed since the 
emphasis is placed on the development of preferred crystallographic orientation 
of mineral grains. The preferred orientation problem has been the main stimulus 
for many of the papers on nonhydrostatic thermodynamics, and references to 
this aspect will be given later. Standard books such as those by Sander [1970] 
and Turner and Weiss [1963] set the problems of preferred orientation in their 
geologic context. 

3. Phase transitions are known in some cases to be influenced by shear 
stress, especially in the case of displacive or martensitic transitions. Such situa- 
tions have been studied more in metallurgy than in mineralogy, although Harker's 
[19'32] notion of 'stress' and 'antis•ress' minerals has received a great deal of 
attention, often not very critical from the point of view of thermodynamic theory. 
The recent experimental demonstration of the role of nonhydrostatic stress on 
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the •-fi transition in quartz by Coe and Paterson [1969] constitutes a clearer 
example in mineralogy. 

4. Diffusion in a s•ressed solid has entered in•o geologic discussions less 
•han •he above •hree topics, but i• could conceivably be of importance in deter- 
mining solute distribution around he•erogenei•ies such as inclusions since such 
effects are known in metallurgy. 

5. Among o•her, more specialized applications, •wo recen• papers deal 
wi•h possible implications for earthquakes' one paper is in connection wi•h 
mel•ing [Ida, 1970], and •he o•her is in connection wi•h phase •ransi•ions 
[Ha•yga, 1970; cf. Kumaza•va, 1963]. 

A poin• •o be emphasized is that it is no• always clear whether particular 
problems involve only questions of •hermodynamic equilibrium or whether 
kinetic considerations of various sor•s are of grea•er importance. Tha• is, from 
•he point of view of •heory •he problems are often no• well posed. However, 
•o be able •o appeal •o a well-founded body of •heory in either area may, con- 
versely, help •o define •he problems. Therefore, in •he con•ex• of problems such 
as those lis•ed above, i• is worthwhile •o. aim a• as clear an understanding as 
possible of •he fundamental principles of nonhydrostatic •hermodynamics. 

There has been a good deal of controversy in •he literature on some quite 
basic aspects of •he application of •hermodynamics in nonhydrostatic situations; 
see, for example, •he paper by Ka•nb [1961a] and •he ex•ensive discussion of i• 
in the same volume [Ho#er, 1961; Ku•n•zav•a, 1961; Ma.cDo•c•ld, 1961; Kayrib, 
1961b]. I• would •herefore seem •ha• •his is a difficul• subject, and, because of 
•he a•endan• confusion and obscurities, grea• care is needed in applying i• •o 
particular problems. One of •he sources of difficulty is •he carrying over of con- 
cep•s •ha• are special •o hydrostatic situations wi•hou• a realization of •hese 
restrictions. I• is •herefore impor•an• •o begin a• •he mos• general and e]e- 
menta.ry level and •hen •o introduce •he necessary restrictions explicitly. The 
presen• re:•iew at•emp•s •o follow •his procedure, perhaps at •he risk of appear- 
ing •ri•e in places. The aim is •o presen• a consis•en• and usefully intuitive ou•- 
look on •he basic •heory and on how •his •heory is developed in various 
applications. 

B. FUNDAMENTAL PRINCIPLES 

This section a•emp•s •o presen• •he main s•eps in developing a •hermody- 
namic •heory •ha• is applicable •o situations invo.]ving nonhydrostatic s•ress and 
•o highligh• •he main assumptions and restrictions involved. No pretense is made 
•o give a rigorous and complete development, and some of •he more subtle aspects 
•end •o be glossed over; •he aim is ra•her •o char• a course •o help the non- 
specialist appreciate •he applicability or validity of particular •l•ermodynamic 
results in particular situations. The point' of view •o be given is derived largely 
from the books by De•l•gh [19(}6] and P•ppard [1957] for general principles 
and from •he articles by Gibbs, Kamb, McLellan, Ida, Li, and o•hers ci•d 
la•er for nonhydrostatic aspects. This section a•temp•s as far as possible •o 
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present a synthesis of what would be commonly agreed on. Because of its intui- 
tive value, this inductive approach rather than a more elegant axiomatic 
approach [cf. Callers, 19'60] has been followed. 

Thermodynamics is concerned with the relationships in physical systems 
between the various contributions to energy (including heat and work) and with 
the state of these systems in terms of parameters such as temperature, pressure 
(or stress), and chemical composition. Here we shall only consider equilibrium 
situations, comprising, properly speaking, the field of thermostatics. However, 
the results are also commonly used as a starting point for speculating about the 
directions and rates of change in systems that are not in equilibrium. The 
proper development of theory in the latter case is difficult and is subject also 
to considerable controversy, although some progress has been made in dealing 
with steady state transport processes (diffusion of heat or matter) in what is 
known as 'irreversible thermodynamics' [e.g., Prigogir•e, 1961; de Groot aad 
Mazur, 1962; Coleman, 1964; Truesdell, 1969]; this field is not touched on here. 

We shall take as defined the main concepts and terms such as system, 
environment., isolated, closed and open systems, reversible and irreversible 
changes, extensive and intensive variables, phase, and component [e.g., Deabigh, 
1966, chapter 1]. Heat, work, and temperature are also taken as defined con- 
cepts, although in more rigorous developments the notion of temperature is 
usually derived from more general concepts [e.g., Truesdell and Toupin, 1960, 
p. 621]. Work done on a system by its environment is taken as positive. 

The first law of thermodynamics, a statement about the conservation of 
energy, defines the internal energy of a system as an energy content that char- 
acterizes the internal state of the system. This law leads to the fundamental 
relation 

U•- U• = z•Q+z•W 

for any change in a closed system from a state A to a state B, where U.4 and UB 
are the internal energies in the two states, AQ is the amount of heat added to 
the system, and aW is the amount of work done on the system during the 
change. Sometimes potential energy and kinetic energy are. listed separately on 
the left-hand side of (1) [e.g., Andrews, 1972], but here we take them as being 
included in the internal energy. If (1) is written in the form 

dU = dQ q- dW (2) 

it has to be remembered that, in general, only dU is a total differential in the sense 
that it is independent of path (depending only on initial and final states) whereas 
dQ and dW may depend on the path taken in a particular change; this latter 
prope_rty is often indicated by the use of different symbols, such as •Q and 
or dQ and 

In the case of an open system, we suppose that the reversible addition of 
material, under the notional conditions that no heat or work is exchanged with 
the environment, increases the internal energy in proportion to the amount 
(mass) added. So, for any reversible change in an open system, 

dU = dQ q- dW q- g•dNi (3) 
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where N• is a measure of the mass (usually the number of moles) of a particular 
component i, m is a parameter known as the chemical potential of the component, 
and summation over all values of i is implied. The restriction to reversible addi- 
tion of material is made to permit the last term in (3) to be written in this 
product form. It is also implicit in (3) that the system is homogeneous, but 
this implication is not restrictive because we can always take a small part: of 
a nonuniform system as the system for the purpose of defining the chemical 
potential, just as is done in defining temperature or stress. The chemical potential 
can thus be defined as 

•i • OU/oN, (4) 

tinder the constraints that dQ + dW and dN• (j v • i) are 0. Defining the chemi- 
cal potential at this point is somewhat: unorthodox and clumsy, but the form 
(4) seems intuitively useful pending the introduction of the notion of entropy 
and a suitable generalization of the volume coordinate. Note that a slightly 
different: type of definition is used in irreversible thermodynamics [Truesdell 
and Toupin, 1960, p. 636]. 

The second law of thermodynamics evolves out of the distinction between 
irreversible processes (also called 'natural' or 'spontaneous') and reversible pro- 
cesses and so is a sort of qualification of the first law. It introduces another 
function of state, the entropy, which enables one to establish a criterion for 
whether or not a particular change or process is possible. The second law can 
be paraphrased in two statements: 

1. For a reversible change, dS---- dQ/T; this relation gives a measure of 
entropy $. For any other change, dS > dQ/T. 

2. Under adiabatic conditions, S is unchanged in a reversible change and 
increases in an irreversible one. Thus for a reversible change we can rewrite (2) 
and (3) to give the fundamental or Gibbs equations, as follows. For a closed 
system, 

For an open system, 

dU = TdS q- dW (5) 

dU = TdS q- dW q- u,dN, (6) 

(For an irreversible change the equality is replaced by <.) 
The second law also allows useful criteria of equilibrium to be set up. A 

system is said to be at equilibrium under a given set of constraints when there 
is no possibility that the system will change spontaneously to any other state. 
For an isolated system, it follows from the second law that. the equilibrium state 
is that. for which S is a maximum. Criteria of equilibrium under other conditions 
follow from this definition. Thus it is a useful corollary of the above criterion 
that U is a minimum for the equilibrium state under the constraints that no 
entropy or matter is exchanged with the environment and no work is done by 
the environment on the system [cf. Gibbs, 1906; McLellan, 1968; Hanyga, 1971]. 
When such a criterion is applied in practice, it is sufficient that only the effect 
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of small reversible changes in the system be examined, since these will produce 
the greatest change in U [cf. Pippard, 1957, p. 101]. 

In addition to discussing the equilibrium of the whole system in terms of 
its extensive parameters, we can consider equilibrium between parts of the 
system in terms of intensive parameters for specific interchanges. For example, 
equilibrium between two parts of a system in respect to interchange of heat 
or matter requires that the temperature or chemical potential, respectively, be 
the same in both parts. Specifying the equilibrium conditions in terms of the 
intensive parameters involved in all possible processes in the system is equivalent 
to specifying the equilibrium in terms of the extensive parameters for the whole 
system. 

We have by now introduced all the essential concepts of equilibrium 
thermodynamics. However, three additional aspects should be commented on 
before we consider applications. 

1. The form of the work term dW in (5) and (6) has deliberately been 
left unspecified so far. In hydrostatic thermodynamics it is normally dW = 
-PdV, where P is the pressure and V the volume, provided the rate of change is 
slow in comparison with the rate of equilibration of pressure so that the change 
can be regarded as reversible. But, in more general situations, great care is needed 
in arriving at the appropriate and correct form of the work term since error 
or confusion has often arisen at this point. In particular, the work term may 
take different forms depending on the particular process involved, even if the 
state of styess is the same (e.g., contrast the cases of crystallization of material 
onto the surface of a stressed solid and diffusion of solute in the same stressed 

solid, discussed below). For a reversible change the work term can usually be 
expressed as a sum of terms of the form Y•dX•, where Y• is generalized force 
and dX• is generalized displacement [Pippard, 1957, p. 27]; however, the spe- 
cification of Y• and dX• then depends on the particular application and has to be 
done with care. ß 

2. In hydrostatic thermodynamics it has been found very useful to introduce 
certain auxiliary functions, or thermodynamic potentials. These are additional 
extensive quantities with the dimensions of energy that are used, in particular, 
in discussing equilibrium under given sets of constraints. However, these functions 
do not introduce any new concepts since they are derived entirely from quantities 
already defined above. The auxiliary functions are Helmholtz free energy F -- 
U - TS (useful where temperature and volume are treated as the independent 
variables), enthalpy H ---- U -[- PV (useful where pressure and entropy are the 
independent variables), and Gibbs function G -- U -•- PV - TS (useful where 
temperature and pressure are the independent variables). The Gibbs function, 
in particular, assumes prominence in hydrostatic chemical thermodynamics since 
temperature and pressure are commonly the quantities that are controlled ifi 
experimental work. In this case the appropriate criterion of equilibrium is that 
the Gibbs function be a minimum for a system held at constant temperature and 
pressure. Another important property of the Gibbs function is that, in any revers- 
ible change at constant temperature and pressure, dG is identical with •idNi. 
Thus the chemical potential of the ith component can be regarded as a partial 
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molar Gibbs function, as expressed by the identity •i -- (3G/3Ni)•.•..:•i, where 
j • i; this identity is derived from •i -- (3U/3N•)s.v.:•i, where j • i. The Gibbs 
function, and enthalpy, can be generalized for nonhydrostatic situations by writing 
a suitable work potential in place of -PV, but the form of this potential will 
depend on the particular processes concerned, as was the case with the work 
term dW discussed above; the forms such as Vo•½ie•i given by Thurston [1964] 
(see also Barron and Munn [1970]) are only valid under certain restrictions, such 
as the absence of exchange of material between phases. Therefore, to avoid dif- 
ficulties or pitfalls associated with attempts to formulate such generalizations, it 
would seem better to leave this aspect open. On the other hand, there are no such 
problems in using the Helmholtz free energy in nonhydrostatic situations (as was 
done by Gurney [1947]), because its form is unchanged, although suitable coordi- 
nates must be chosen in place of the volume when the Helmholtz free energy is 
used in differential form [Gurney, 1947; Thurston, 1964]. 

3. Another aspect of hydrostatic thermodynamics has been the setting out 
of a number of relationships between the various parameters and functions, such 
as T = (½9U/e9S)v.N, = (½9H/e9S)p.N, and so on, the Maxwell relations 
= -(•9P/•9S)•.•, and so on, and the Gibbs-Duhem equation - SdT q- VdP - 
N•d• = 0 [e.g., Denbigh, 1966, pp. 89-94]. These relationships also introduce 
no new concepts, but they are useful in mathematical manipulations. Again we 
postpone any attempt to develop analogous relationships in the more general 
nonhydrostatic situations. 

C. SPECIFIC APPLICATION 

So far we have only mentioned the fundamental thermodynamic principles 
that apply generally to systems in equilibrium and have introduced the essential 
quantities involved. Further progress is difficult at this level of generality, and 
for the discussion of practical problems it is necessary to introduce restrictions. 
The universality of thermodynamic arguments is illusory since no practical 
problem can be attacked until the appropriate restrictions are specified. These 
restrictions or constraints primarily concern the •ypes of macroscopic processes 
or changes that are possible or need to be considered in the particular situa- 
tion (although not necessarily the specific atomic or other mechanisms). Thus, 
to make practically meaningful the statement that a system is at equilibrium, 
it is necessary to specify the types of practical processes by which the system 
could conceivably depart from equilibrium. Then, strictly speaking, we should 
speak of the system as being at equilibrium in respect of these processes. (A 
similar emphasis on the importance of specifying particular restrictions is 
implicit in the distinction between 'absolute equilibrium' and 'local equilibrium' 
by Ida [1969] as well as in various earlier writings from Gibbs onward; 
equilibrium with respect to a particular process has been called a 'partial equi- 
librium' by Hanyga [1971].) 

Lack of clarity at this point (i.e., in specifying precisely and adequately 
the practical problem or class of problems being dealt with) has often been the 
root of the apparent discrepancies that have arisen in the various treatments 
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of nonhydrostatic problems. The first step therefore in applying thermodynamic 
arguments to nonhydrostatic problems is to describe clearly the model situation 
that is being assumed to represent or idealize the practical situation. When 
models, such as those discussed below, are specified, the following concepts are 
often useful: (1) heterogeneity and homogeneiW, (2) mobility and immobility, 
(3) coherence, and (4) constitutive relations. 

1. The concepts of heterogeneity and homogeneity (i.e., nonuniformity 
and uniformity) are applied in many ways and generally do not need addi- 
tional explanation [cf. Paterson and Weiss, 1961]. However, it may be worth 
elaborating on one use in connection with chemical change, namely, that a 
heterogeneous change or process is one that occurs at a specific site or sites 
(especially at interphase boundaries) and not everywhere whereas a homogeneous 
change is one that occurs throughout the body or system concerned. This concept 
is not to be confused with the concept of heterogeneous equilibrium often referred 
to in connection with multiphase systems, i.e., the equilibrium between different 
phases; such an equilibrium may be an equilibrium with respect to heterogeneous 
processes (e.g., pressure solution) or with respect to homogeneous processes 
(e.g., diffusion of a solute in the phases). 

2. MobiliW is the property, usually ascribed to components, of being able 
to move from one place to another in the system [cf. Li et al., 1966; McLellan, 
1970]. It is implied that the rates of movement can be significant on the time 
or distance scale considered. The mobility or immobiliW of components leads 
to important constraints when model situations are specified. The concept of 
immobility may sometimes be usefully extended to cover the permanence of a 
framework or configuration oœ positions (such as a crystal lattice), but this 
use tends to overlap the concept of coherence, to be discussed next. In other 
cases, one may wish to distinguish different ranges of mobiliW, e.g., local or 
widespread or within certain phases or boundaries. 

3. In the present context, coherence refers to a correlation or relationship 
between the internal configurations of two phases across their common boundary 
or to the correlated nature of the transformation or process whereby one phase 
changes into. the other. The same concept exists in metallurgy in relation to 
small precipitate particles within which the lattice is a continuation of, or 
shares a sublattice with, the lattice in the host. The concept is somewhat 
analogous to the correlation in phase to which the term refers in optics. McLellan 
[1970] describes a coherent transformation or process as one in which 'the 
atoms, ions or molecules of the solid which form the immobile base structure 
and which are neighbours before the process occurs remain neighbours through- 
out the process,' but the concept is really a macroscopic one that need not be 
stated in terms of the position of atoms. The essential notion lies in there 
being a continuity of internal structural framework or 'natural' coordinate sys- 
tems to which the configuration of material points in both phases is related 
and that makes it possible to define a reversible transformation strain. The 
concept can therefore only normally apply to solid phases. The •-/• inversion 
in quartz is an example of a coherent transformation, whereas melting is an 
incoherent one. 
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4. The constitutive relations introduce the distinguishing properties of 
particular materials or classes of materials in the form of relations between 
extensive and intensive variables, such as between forces and displacements 
or motions. Mechanical, thermal, or chemical quantities may be involved. Two 
of the best known constitutive relations are the equation of state for perfect 
gases and Hooke's law for elastic materials. 

At this point, one might attempt to set out a classification of model 
situations based on common restrictions or constraints. For. example, McLellan 
in 1968 and 1970, respectively, refers to two classes of situations; in t. he first, 
all components are said to be mobile, whereas, in the second, some components 
are immobile. In the second class are included coherent phase transformations, 
equilibrium with respect to diffusion through a solid phase under stress, and 
equilibrium of a stressed solid in contact with its solution. It is not easy to see 
what real nonhydrostatic situations are included in the first class because of the 
difficulty of imagining changes in a system involving the mobility of all com- 
ponents on a given time scale that do not relax the shear stresses. However, 
in this review, it seems presumptuous to attempt a comprehensive classification 
of situations in view of the relatively few applications of nonhydrostatic thermo- 
dynamics that have so far been made. We shall therefore o.nly consider some 
specific situations that illustrate the application of the general principles and 
that have received attention because of their possible practical importance. 
The specific situations considered are equilibrium between a stressed solid and 
its solution, recrystallization under stress with application to preferred orienta- 
tion in aggregates, coherent phase transitions under stress, and diffusion in a 
stressed solid. 

D. EQUILIBRIUM BETWEEN A STRESSED SOLID 
AND ITS SOLUTION 

1. Theory 

This classic problem was first treated in 1875 by Gibbs [1906], whose results 
have been rederived or expounded by Kamb [1959, 1961a] and by several 
more recent writers [Liet al., 1966; Ida, 1969; McLellan, 1970; Hanyga, 1971] 
(see also MacDonald [1957] and comments on his treatment by Kamb [1959, 
1961•a, b]). It concerns the equilibrum between a solid phase under stress and 
a fluid consisting of a solution of the component forming the solid phase, the 
fluid being under pressure and in contact with the solid. Material from the 
surface of the solid can go into solution or precipitation can occur on the surface 
from the solution, but no diffusion within the solid is considered. Usually the 
state of stress in the solid is assumed to be such that its component normal to 
the surface in contact with the fluid is equal to the pressure in the fluid; i.e., 
the surface of contact is loaded by the pressure in the fluid. However, the 
separate roles of the pressure in the fluid and the stress in the solid are made 
clearer and a slight generalization is achieved by considering a system in which 
the loading of the solid is effected by a permeable loading frame entirely con- 
tained within the system (cf. Kamb's [1959, p. 158] 'inert constraining solid') 
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so. that the components of stress in the solid can be specified independently of 
the pressure in the fluid. We now treat this situation as a closed system within 
rigid containing walls (Figure 1) and follow a procedure similar to that of 
McLellan [ 1970]. 

Consider a small reversible change consisting of the following steps: 
1. A small piece of the solid, containing m moles, is detached from the sur- 

face of the solid at a site A, where the component of stress normal to the surface 
is an, and is removed from the system. This step changes the internal energy of 
the system by -usm, where Us is the molar internal energy of the stressed solid. 

2. The loading frame is adjusted to regain contact with the surface of the 
solid by means of displacements normal to the surface. The change in potential 
energy of the loading frame, which will be included in the internal energy of 
the system, is -(an - p)vsm, where p is the pressure in the fluid and vs is the 
molar volume of the solid in its stressed state. • (There may be conceptual dif- 
ficulties with this adjustment procedure in cases where the surface being loaded 
is not normal to a principal stress axis in the solid. Further study is needed of 
the logical admissibiliW of an equilibrium model in which there is a component 
of uniform shear loading on the surface of a solid that can dissolve in a sur- 
rounding fluid.) 

3. A quantity, m moles, of the component of the solid, in the same state 
in which it occurs in the solution, is introduced into the system and is dispersed 
in the solution in the vicinity of the site A. This step changes the internal energy 
of the system by u•.m, where •tz is the partial molar internal energy of the com- 
ponent of the solid in the solution. The total amount of mass in the system has 
thus been conserved. 

4. Since a different volume will be occupied by the m moles in the solu- 
tion than by the m moles in the solid, the changes so far will have involved a 
net volume change of (v• - vs)m; to accommodate this change, the boundary 
of the system would have had to have been moved (v• is the partial molar 
volume of the solute in the solution). Now move the boundary of the system 
back to its original position; in so doing, work is performed on the system of 
amount p(v• - vs)m.. This step establishes the condition that the total work 
done on the system is 0 by virtue that the boundaries are eventually unmoved. 

5. Finally, add to the system a quantity of heat equal to -T(s• - ss)m 
to compensate for the changes -Ssm and s•m in entropy incurred in taking m 
moles of solid from the system and adding m moles of solute in steps 1 and 3 
above (Ss and s• are, respectively, the molar entropy of the solid in its stressed 

x Note that here, as elsewhere in the paper, compressive stress is reckoned as being 
positive; this convention has often been found to be useful in the geologic context [cf. 
Jaeger and Cook, 1969] and replaces the convention commonly used in physics and engineer- 
ing, and therefore in most writings on thermodynamics, of reckoning tensile stress as being 
positive. Compressive strain will also be reckoned as being positive; i.e., e _-- --/•l/1, where e 
is an infinitesimal normal strain component and 1 is an elementary length. The latter con- 
vention is rather unorthodox but has the advantage that strain energy is still a positive 
quantity. It should be noted that in this convention the volumetric strain e• -- --/•v/v, 
where v is the volume. 
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FLUID 

Pressure p 

Fig. 1. Schematic representa.tion of closed 
system containing a solid under stress •r•j 
and • fluid under pressure p, in which the 
solid can dissolve. The hatching represents 

a notional permeable loading frame. 

state and the partial molar entropy of the component of the solid in the solu- 
tion). This addition of heat establishes the condition that the entropy of the 
system has been unchanged. 

The total change in internal energy in the above reversible change achieved 
by this path is then by the first law 

AU = -usm - (•. - p)vsm -{- uLm -{- p(vL - vs)m - T(s• - ss)m. 

The same calculation with all signs reversed could be carried through for the 
reverse change, and the same result must hold for any other possible reversible 
path. Since we have satisfied the constraints ,AS -- AW - 0 under which the 
criterion of equilibrium for a closed system is AU -- 0 (see above) and since m 
can be given any arbitrary value, we have thus established the equilibrium con- 
dition that 

-u• - (,• - p)v• + u• -t- p(v• - v•) - T(s• - s•) = 0 

uz - Tsz -[- pvz = Us -- Tss -[- (7) 

Infinitesimal changes in the pressure of the fluid and in the stress in the solid 
occurring during the above change have been neglected; this neglect is justified 
since the changes always involve amounts of work that are small in comparison 
with the energy changes taken into account. 

It is well known from hydrostatic thermodynamics that the quantity on 
the left of (7) is equal to the chemical potential mr of the component of the 
solid in the solution. Therefore the condition of equilibrium between the stressed 
solid and its solution in the vicinity of the site A at which the stress component 
normal to the surface of the solid is a. is given by 
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•L = us -- Tss -• aavs (s) 

This importan• result, due •o Gibbs [1906], •hen enables us, given the appropriate 
data for •he solid, to determine i•s solubility at the given site by using •he 
normal relationship between chemical potential and solubility and, in particular, 
to calculate the influence of •he state of stress in the solid on i•s solubility (see 
section 3 below). 

2. Comments 

The following comments refer to several important aspects of •his result 
and its derivation: 

1. Relations 7 and 8 refer only •o a local equilibrium in the vicinity of 
•he si•e concerned. The local equilibrium value of .g• in •he fluid may be differ- 
ent in •he vicinity of other sites on •he surface of •he solid where any of •he 
quanfi•ies on •he right-hand side of (7) and (8) is different; for example, even 
if the stress • is the same everywhere in the solid, ,• can vary with the orienta- 
tion of the surface and so lead to a variation in •. Hence the solubility can be 
different at different faces. If the fluid phase is continuous, no overall equilib- 
rium is therefore possible on a time scale on which significant diffusion occurs 
on the scale of dimensions of the whole body. Moreover, the solid as a whole is 
unstable relative to an identical solid under no stress in the. same system if 
diffusion can occur between the solids a• a significant rate. It is therefore impor- 
tant that the constraints implied for the scale of diffusion in the model be borne 
in mind in applying relations 7 and 8. 

2. The molar quantities us, ss, and vs all refer to the solid in its stressed 
state and so are functions of a•. In particular, the molar internal energy includes 
t. he elastic strain energy in the solid, with the consequence that the molar 
internal energy is sensitive to the orientation of the solid if the solid is 
elastically anisotropic, as in the case of crystals; in crystals, even for a given 
a• and a• the solubility may vary with the orientation of the structure of the 
solid. Similarly, if • is fixed but other components of the stress ,• are changed, 
the solubility may be changed. On the other hand, if ,• is held fixed by suitable 
adjustment to the loading frame and the pressure p in the fluid is changed, the 
chemical potential of the solute in the fluid • will not be changed; in other 
words, the solubility, expressed as a mole fraction, will be. independent of the 
pressure in the fluid if the state of stress is unchanged in the solid (provided 
that the same degree of ideality holds in relating chemical potential to solubility, 
i.e., that the activity coefficient of the solute is not changed). 

3. This problem illustrates clearly the importance of expressing correctly 
the work term in the fundamental energy balance (1). An essential aspect of the 
present problem is the heterogeneous nature of the changes permitted under 
the constraints on diffusion, whereby only attachment or removal of material 
at the surface of the solid, not insertion of material within the solid, is allowed. 
The work term (•,,Vs then derives from the displacement of the interface and 
not from any change in specific volume of the stressed solid. Therefore it would 
be irrelevant, for example, to construct a potential containing a work term of 
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the type V.o•j•j, where •ij is the infinitesimal elastic strain in the solid and vo 
a reference volume (the elastic strain energy of the solid is already counted in 
the internal energy, as is noted in comment 2). However, if desired, a general 
expression for the work in terms of tensoffal quantities can be set up for a situa- 
tion such as this one by the use of 'generalized volume coefficients' V•j [Kumazawa, 
1961, 1963; Ito, 1966; McLellan,, 1970] (cf. also the 'surface partial molal volume' 
of Liet a,l. [1966]). 

4. In spite of the dictum of Kamb [1961a] that 'it is not possible usefully 
to associate a chemical potential or Gibbs free energy with a non-hydrostatically 
stressed solid' in situations such as the above, many attempts have been made 
to set up potential functions of general applicability in nonhydrostatic situa- 
tions analogous to the Gibbs function in hydrostatic thermodynamics. Kamb 
[1961a] discusses the unsatisfactory nature of such attempts by Goranson 
[1930], Verhoog.en [1951], MacDonald [1960], and Kumazawa [1961]; Ida 
[1969] similarly comments on the attempts by Kum.azawa [1963] and Ito [1966.]. 
However, insofar as it is worth pursuing the Gibbs function type of approach, it 
is possible to construct functions that serve as potentials for determining 
equilibrium locally under particular constraints, but these potentials may not 
be applicable at all sites in the system [e.g., Li et al., 19.66]. A similar purpose 
is served by generalizations of such functions that apply ostensibly to the whole 
system, e.g., the 'Gibbs functions' of McLellan [1970] and Hanyga [1971]. 
However, these functions are not fully analogous to the Gibbs function in 
hydrostatic thermodynamics because they must depend on particular constraints 
introduced in particular situations, e.g., the constraint on the range or scale 
over which diffusion is effective in the situation considered above. A similar 

point is recognized by McLella.n [1970] in his comment that his 'Gibbs function' 
is 'not truly extensive.' Therefore, in view of the confusion that may arise when 
particular constraints are overlooked, it is probably better to deal with each 
situation from first principles and not to attempt to go beyond deriving chemical 
potentials relating to local equilibriums. 

3. Application to Pressure Solution 

The influence of stress on solubility, which is presumably fundamental to 
pressure solution phenomena in geology (see the introduction), can be treated 
by introducing from the theory of solutions the usual relation for the chemical 
potential of the solute in the solution' 

• -- •*(p, T) -•- RT In •c (9) 

whereby the activity coefficient • is defined, c being the concentration (mole 
fraction) of solute, R the gas constant (per mole), and T the absolute tem- 
perature; .• is a function of the pressure p and temperature T only and so is 
independent of the concentration c. Applying this relation to the system discussed 
above, we can therefore write the following by using (8)' 

•*(p, T) • RT In •c• = u• -- Ts• • •,•v• (10) 

where u•, s•, and v• are' now written in place of us, ss, and vs •o designate the molar 
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quantities for the solid when it is under the stress • (whose components are 
and where •, and c, are the activity coe•cient and concentration of the component 
of the solid in the solution at equilibrium in the vicinity of the site where •n is the 
component of stress in the solid normal to the surface, the fluid being at pressure p. 
Alternatively, if the state of stress in the solid were a hydrostatic pressure equal 
to the pressure p in the solution (i.e., •i = p/• and therefore also •n = p), then 

•*(p, T) q- RT In ?•c• = u• - Ts• q- pv• (11) 

where u•, s•, and v• are the molar quantities for the solid when it is under 
hydrostatic pressure p and where 7• and c• are the activity coefficient and con- 
centration of the component of the solid in the fluid at equilibrium at the same 
pressure p. From (10) and (11) we then obtain 

RT In •c___• ?•c• = (u,- Ts,) - (u•- Ts•) q- •v,- pv• (12a) 
Or, writing [, ---- u, -- Ts, and [• -- u• 
free energies of the solid, we obtain 

Ts• for the corresponding molar Helmholtz 

RT In •,c__• = (•, _ •) q_ •,(v, - v•) q- (• - p)v• (12b) 

The first term on the right-hand side of (12b) is equal to the difference between 
the elastic strain energy of the solid at stress a and at hydrostatic pressure p. 
Under the assumption of linear elasticity, used throughout this paper, the elastic 
strain energy is «Vo•e•. Therefore, the third term is normally large in comparison 
with the other two, unless • • p. Consequently, at a face subjected to compressive 
(or tensile) loading additional to the pressure in the fluid, the solubility is significantly 
increased (or decreased) relative to that of the solid under hydrostatic pressure 
only; the effect is determined mainly by • - p through the third term and is only 
slightly modified by the other stress components in the solid through the first 
two terms. On the other hand, at a 'free' face subjected only to the pressure in 
the fluid, because the third term is now 0, the solubility is always increased by 
additional stress in the solid, but the effect is relatively small. 

These predictions from thermodynamic theory are contained in Gibbs 
[1906] and are set out clearly by Williamson [1917]. Bridgman [1916] gives 
some very general formulas, the basis of which is not clear, and he does not 
apply them to this problem; the papers of Riecke [1895, 1912] are mainly con- 
cerned with melting under stress and only refer briefly to the equilibrium between 
a stressed body and a solution. The influence of stress on solubility had already 
been discussed qualitatively by Sorby [1863, 1879], but he did not distinguish 
clearly between the 'loaded' face and 'free' face aspects; Thompson [1862] 
had demonstrated an effect experimentally for compression applied to rock 
salt in the presence of its solution in water. The naming of the effect after 
Thompson and Sorby, sometimes done, is therefore more appropriate than the 
more frequent attribution enshrined in 'Riecke's principle' in geologic writing. 
Similar predictions have been made by several later authors, including Goranson 
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[1940a, b] and Gurney [1947]; Gurney also considered the converse problem 
of the absorption of the fluid in the solid, which is applied to the swelling of wood. 

The situation is usually illustrated, for clarity, with the simple case of 
uniaxial stress • in the solid and zero pressure in the fluid, taken to be a liquid; 
relation 12 then reduces to the following forms (neglecting second-order quanti- 
ties in the first two expressions). For the loaded faces (those normal to the 
applied stress), 

or 

%c• = •oCo exp Voer/RT (13a) 

O/Oa (ln %c•) = vo/RT (13b) 

For the free faces (those parallel to the applied stress), 

%c• = •oCo exp voa•'/2ERT (14a) 
or 

O/Oa (ln •c•) = Voa/ERT (14b) 

The quan•iSy E is Young's modulus of •he solid. 
For the slightly more general case of a uniform uniaxial s•ress • - p super- 

imposed on a hydrosSatic pressure p, (12), now including all •erms, gives the 
following for •he loaded faces: 

Vo • lp • • %c• = %c• exp • (• -- p) + • • + •a,ieii -- ffeii (15a) 
where K is the bulk modulus of the solid, 

• 0 0 

o 

and ev is the linear elastic strain resulting from this stress •ij. Unless p is very 
large, the first term under the exponential in (15a) predominates and thus leads 
to an approximate expression similar to (13a) but with • - p substituted for ,,. 
For the free faces, 

) %c• = %c• exp •-• • q- «•e• - pe• (15b) 
In the particular case of isotropic elasticity the full expressions 15a and 15b, 
respectively, become the following. At the loaded faces, 

vø [ ( • •K2P) I(•--P)•'] (15c) %c• = •c•exp•-• (a--p) 1 -- q- • E 
At the free faces, 

•)o 

'•c• = '•c,, exp 2ER•; (a -- p)2 (15d) 
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In the general case the influence of the elastic anisotropy enters through the 
terms «eij•j e•,• in (15a) and • - - •e• 'p•j in (15b). Not only is there an 
orientation dependence of the solubilities at both the loaded and free faces of 
the stressed solid relative to the solubility of the solid under hydrostatic pressure 
alone, bu• the relative solubility at loaded and free faces of the s•ressed solid 
itself can depend on the crystallographic orientation in the solid. 

Gotanton [1940•, b] has discussed the application of relations 13 and 14 
to creep. Weyl [1959] has made calculations for some models involving pressure 
solution phenomena tha• assume a relation c = co + be, where co and b are 
constants; this relation is consistent with (13a) if the stress is small, bu• it is 
only applicable to the loaded face. The formula quoted by Durney [1972] is 
inconsisten• with the above theory, bu•, if his dubious •dp term were eliminated, 
his formula would correspond to (13b) and would then be in exactly the same 
form as that given by Williamson [1917, case 2, (B), p. 280]. 

E. RECRYSTALLIZATION UNDER STRESS AND PREFERRED 
ORIENTATION IN AGGREGATES 

1. General 

The need to define carefully the constraints effective in particular situations 
is well illustrated in the application of thermodynamics to recrystallization in 
aggregates under nonhydrostatic stress, since differences in the processes that 
are permitted lead to differences in predicted preferred orientations. The general 
problem is to determine which crystal orientation is stable relative to all others 
when an aggregate of crystals of all orientations is placed under stress, the 
principal factor to be taken into account being the elastic strain energy of the 
crystals. However, when an energy balance is set up, the work term must be 
expressed very carefully with regard to the particular constraints. In all of 
the papers reviewed under the present heading the following two general assump- 
tions have been stated or are implicit. 

1. The internal state of the crystals, except in regard to elastic strain, 
is the same before and after recrystallization. This assumption eliminates from 
consideration all situations such as annealing recrystallization (where crystal 
defects and stored energy introduced by prior plastic deformation are eliminated 
or changed during recrystallization) or recrystallization accompanied by chemi- 
cal change. 

2. All crystals in the aggregate are assumed to be under the same homo- 
geneous stress as the aggregate as a whole. It is therefore implicit that any 
local changes in stress resulting from local recrystallization are ephemeral, the 
state of uniform stress being restored eventually by processes that are effective 
on this local scale but negligible on such larger scales as would lead to relaxation 
of the overall state of stress in the aggregate. In practice, there are serious 
reservations about this assumption (see comment I below). 

Of the many papers concerned with this thermodynamic problem, the most 
important are. those of Kam.b [1959, 1961a.], whose development, based on the 
same Gibbsian approach as outlined above, will be summarized here. Kamb 
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[1959] treats two specific recrystallization models, here designated as I and 2, 
for which the following characteristics are assumed in addition to the two gen- 
eral properties given above: 

1. It is assumed that the substance whose orientation is in question does 
not form most of the polycrystalline aggregate or that intercrystalline fluid is 
present. 

2. It is assumed that the substance in question forms all or most of the 
polycrystalline aggregate and that no intercrystalline fluid is present. 

In both models it is clearly recognized that the recrystallization is a hetero- 
geneous process, but there are important differences in the role of diffusion 
and in the state of stress at the grain boundary. 

2. Kamb Model 1 

In this model [Kamb, 1959, sections 3-5] the growth or disappearance 
given crystal occurs, in effect, by the interchange of material with some sort of 
matrix of which the component o• the crystal •orms only a part and within 
which that component can diffuse. Thus diffusion is allowed from all faces of the 
crystal into other parts of the system, but no diffusion through the crystal itself 
is taken into account. It is implicit that the crystals of interest are not generally 
in direct contact with one another. Examples suggested by Kamb that such 
model might represent are biotite crystals in a gneiss or calcite crystals in 
marble containing intercrystalline water. 

The conditions of local equilibrium follow from the same argument as that 
given above for a stressed solid in contact. with its solution since the matrix 
acts as the loading frame (it is assumed that no work is involved in slippage 
between matrix and crystal). Thus, from (8), for equilibrium' between crystal 
and m•trix at any particular site on the boundary of the crystal the chemical 
potential of the component of the crystal in the matrix • must be given by 

•½• = u-- Ts + •v (16) 

where, as before, u., s, and v refer to the crystal in its stressed state (the 5; sub- 
scripts are now dropped) and •r• is the normal stress across the boundary at this 
site. We introduce, for convenience, the molar Helmholtz free energy )• •--- • - Ts 
so tha• u - Ts + .•r,•v can be written as • + •r•v. Let )•o and v.o be the values of 
• and v in the unstressed state, and write • - • + • and v = vo + •v. Then 
the equilibrium condition is 

•c• = ! -4- •v = [o -4- •Vo -4- (A[ q- • Av) (17) 

The •erm •o is independent of orientation and stress and does not enter further 
considerations. Local equilibrium conditions therefore tend f• be determined 
predominantly by the relatively large •Vo term, whereas •he term 
has a second-order effect (taking the elastic strains to be infinitesimal). Thus 
• + •v will generally be greates• a• the crystal faces approximately normal to 
the greatest compressire stress; then, for local equilibrium, •c• will be maximal 
in the matrix nearby. Correspondingly, • will generally be minimal for 
equilibrium in the vicinity of faces approximately normal to •he least principal 
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stress (compression positive). However, the actual values of •hese maxima and 
minima will depend on the crystal orientation through the second-order •erm 

Such a system cannot be at equilibrium as a whole when diffusion can 
occur a• significant ra•es in •he matrix since the diffusion of material from parts 
of the matrix where pcM is higher •o where it is lower will upset the local equi- 
librium conditions discussed in •he previous paragraph and will thus lead •o dis- 
solution at some crystal boundaries and growth at others. The consequences of 
this diffusive •ransfer of material for preferred orientation depend on •he 
second-order •erm Af q- ½r, Av. Kamb [1959] asserts tha• for a given crystal 
to grow •he matrix must be at least saturated with •he componen• of the crystal 
at the faces normal to all three principal stresses (and hence a• all faces) and 
•ha• the tendency to grow or not is therefore determined by conditions at •he 
face at which the solubility is •he greatest, namely, the face normal to •he. maxi- 
mum compressive stress. This view leads Kamb to •he conclusion •haf• 'the 
preferred orientation for a given mineral is that for which the chemical poten- 
tial required for equilibrium across a surface perpendicular to the axis of great- 
es• compressive s•ress is a minimum.' This criterion is equivalent to minimizing 
A)• q- a•Av, where a• is the maximum compressive stress. If a• and e• are the 
complete set of stress and infinitesimal elastic s•rain components (see •he foot- 
no•e for sign convention), Kamb's criterion for model 1 is •herefore tha• the 
preferred orientation is •he one for which •a is a minimum. • ij•ij -- O'l•ii 

Further examination of model 1 suggests that some qualifications of Kamb's 
conclusion are needed, depending on •he relative proportion of crystals and 
matrix. It is convenient to distinguish only the •wo extreme cases in which this 
proportion is low (model la) and in which i• is high (model lb). 

a. Model la. In this model the spacing of the crystals is large in com- 
parison with their dimensions, so the shortes• diffusion path via the matrix is 
•o other faces of the same crystal. This situation would seem to be the one •o 
which Kamb's criterion would be mos• likely to apply, and the preferred orienta- 
tion would then be the one for which • is a minimum. However, it -•(•ijeij -- q'lqi 

should be noted that, because of the •,Vo term in (17), the most pronounced 
trend will be for crystals of all orientations to dissolve at those parts of their 
boundaries •hat are approximately norma] to the greatest compressire s•ress 
and to grow at parts of •he boundaries normal to •he ]east principal stress (com- 
pression positive). The flattening of grain shape to which this trend would lead 
is mentioned by Ka•b [1959, p. 160] and elaborated on by Hartmann and den 
Tez [1964], bu• •he implications for overall strain have not been much dis- 
cussed (see introduction). To meet the second general assumption above, •he 
matrix must undergo adjustments to maintain the stress in the grains during 
this •ransfer of material; •hese adjustments will lead to an overall shortening 
parallel to the maximum compressive stress direction, which might be described 
as a pressure solution mechanism of deformation. It is analogous to Coble creep 
or change of shape by diffusion along grain boundaries [Coble, 1963] and has 
been discussed in detail by Green [1970] for the case where the crystals in 
question occupy most of the body. 
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b. Model lb. In this model the dimensions of the crystals are large in com- 
parison with their spacing. The case of marble with intercrystalline water may be 
a relevant example. Interchange of material between the proximate faces of 
adjacent crystals via the solution will now tend to be the dominant process. Since 
these faces are essentially parallel to each other and since the a•Vo term in (17) 
will therefore be the same for each, the relative solubility will be determined by 
the A• + anAv term, and a given crystal will grow at the expense of its neighbor 
at any point on its boundary where the value of A• + a•Av is less for the given 
crystal than for the neighbor at that point. The preferred orientation will be the 
one for which the net relative growth in volume (i.e., the mean relative growth over 
the whole crystal boundary) is greatest. For crystals •hat are roughly equidimen- 
sional, this preferred orientation will be the one for which «a•ie•i - •e• is a min- 
imum, where • is the mean stress. If the crystals are appreciably flattened aormal 
to a•, however, the parts of the crystal boundary nearly normal to a• will predomi- 
nate in the averaging, and the preferred orientation will then be nearer to that 
for which «a•ie•i - a•e• is a minimum. (Note that it is implicit in this discussion 
that the intrinsic growth rates in the absence of stress are isotropic; anisotropic 
growth rates may accentuate or nullify the above predicted trends.) 

It would appear, therefore, that the preferred orientation actually predicted 
on Kamb model i will depend on further assumptions made about details of 
the recrystalliza'tion process, especially as affected by the relative proportions 
of crystal and matrix and by the crystal shapes, as well as by anisotropic 
intrinsic growth rates. It should be emphasized that this qualification does not 
reflect on the fundamental local equilibrium condition (17) but involves ques- 
tions of a kinetic character arising because the polycrystalline system can never 
be at equilibrium as a whole. 

3. Kamb Model 2 

This model [Kamb, 1959, section 6] assumes a monomineralic material with- 
ou• fluid at the grain boundaries and at a temperature sufficiently low that 
diffusion along the grain boundaries is negligible. The only process allowed there- 
fore is the slight readjustmen• in position of atoms whereby they change from 
being at the lattice sites belonging to one crystal to those belonging to the other; 
this process is familiar in the grain growth of single-phase metals; the maxi- 
mum movement required of any given atom is less than the dimensions of a 
uni• cell. 

The condition of local equilibrium at a boundary between two crystals can 
be derived by an argument along similar lines to that used for the case of 
equilibrium between a stressed crystal and its solution. Let the superscripts I 
and II identify the molar quantities u, s, and v for the two crystals of different 
orientation, and let r• moles of crystal I be transferred to crystal II by a local 
rearrangement of the positions of the atoms. Let a• be the normal stress com- 
ponent perpendicular to •he boundary (compression positive). The following three 
quan•i•ies are involved in the total internal energy change under the cons•rain• 
AS = AW = 0. 
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1. The internal energy is changed by an amount (-u • + un)m, owing to 
the •ransfer of material. 

2. An amoun• of work --,•n(V • -- vn)m must then be done. This require- 
men• is mos• easily seen if We choose the boundary of our closed system •o 
coincide with •he original position of •he grain boundary between •he •wo crystals, 
•he system then being initially within crystal I. After the change, •he outer sur- 
face of the new portion must be moved back •o •he original boundary position 
•o establish the condition tha• no ne• work is done on •he system. I• should be 
noted thai; it is implicit that the length of the recrys•allizing portion parallel to 
the boundary remains unchanged and •ha• no slip occurs parallel to •he boundary. 

3. The •hird quan•i•y involved in •he •otal energy change is an addition of 
hea• -T(s" - s•)m. This quantity is required •o establish •he condition •hat no 
entropy is added •o the system. Then, as before, invoking the equilibrium 
criterion •ha• aU = 0 when no work is done on and no entropy is added •o •he 
system during •he change and allowing )n to have any arbitrary value, we have 
for equilibrium 

AU = (-u • q- u '•) - (r,•(v • - v TM) -- T(s TM -- s •) = 0 
or 

u • -- Ts T q- (r,•v • = u TM -- Ts • + (r,•v TM (18) 

Designating u - Ts by f, the molar Helmhol•z free energy, we can write •he 
local equilibrium condition as 

]• q- •v t: •tt q- •,•v TM (1O) 

Kamb [1959] arrives a• this result by a slightly different but equivalent argu- 
ment in which he explicitly considers work done by the shear components of 
stress parallel to the boundary. Under the definition (4), the quantity f + ½rnV 
can be said to be the chemical potential of the component of the crystal appro- 
priate to equilibrium with respect to this process of recrystallization, although 
this quantity is not necessarily a valid chemical potential for other processes, 
e.g., diffusion through a crystal. 

Since the quantity ! q- •v will, in general, be unequal for two contiguous 
crystals of different orientation in an aggregate under homogeneous stress, the 
aggregate will not be at equilibrium. As in model 1, there will therefore be a tendency 
for recrystallization to occur whereby a preferred orientation will be approached, 
this time by migration of the grain boundary through local rearrangement of 
atoms. Following an argument similar to that used in applying (17) to model lb, 
the difference in ! q- •v between a given crystal and its neighbor across a given 
point on their mutual boundary is given by the difference in the value of A! q- 
•Av between the crystals, where A! is the molar elastic strain energy and Av is 
the molar volume increment due to the applied stress. To predict the preferred 
orientation that will be favored, some kinetic assumptions are again needed. 
Kamb [1959] makes the assumption that to a first approximation the rate of 
migration of the crystal boundary at any point on it will be proportional to the 
difference between the chemical potential g = ! q- •v for the crystal in question 
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and the average of t• for all crystals present; he then applies this assumption under 
the restriction that all grains are initially equant in dimensions so that these 
grains can be assumed to be spherical for purposes of calculation. Under Kamb's 
assumption the rate of migration of the crystal boundary at the given point is 
therefore proportional to ((•) q- •,•(v)) - (! q- •nv), where (•) and (v) are averages 
taken over all orientations. The resultant growth rate in volume of the given 
crystal is then found by averaging over all orientations of its grain boundary; 
thus a growth rate is given that is proportional to (([) q- •(v)) - ([ q- •v), where 
• is the mean stress. The maximum growth rate therefore occurs for the orientation 
for which A! q- •Av is a minimum, so this orientation will tend to predominate. 
That is, in the approximation of infinitesimal strain the preferred orientation will 
be the one for which «•ie•i - •e• is a minimum. 

The preferred orientation predicted for model 2 is therefore different from 
that for model la but, not surprisingly, is the same as that for model lb. As 
examples of both, the specific predictions for quartz, calcite, olivine, and micas 
are given in Table 1 for the particular case of axisymmetric stress where the 
unique axis is that of the maximum compressive stress 61. 

4. Comments 

1. The assumption has been made throughout that. the stress is homo- 
geneous. This assumption is rather artificial and, strictly, is untenable because 
of implied discontinuities in strain across grain boundaries and, in the case 
where a fluid phase is assumed to exist, because shear stress cannot be transmitted 
across the solid-fluid boundaries. The question remains of whether this assump- 
tion is a satisfactory approximation for representing real behavior. Kumazawa 

TABLE 1. Predicted Preferred Orientations for Particular Minerals in Rocks under Axisym- 
metric Compresslye Stress 

Mineral Kamb Model la Kamb Model 2 (also lb) 

a quartz small circle girdle of c small circle girdle of 
[Kamb, 1959] axes at about 60 ø to a• c axes at about 40 ø to a• 

Calcite c axis maximum parallel great circle girdle of c axes normal 
[Kamb, 1959] to a• to a• 

Olivine optical a-axis, [010], optical • axis, [100], 
[Hartmann and maximum parallel to a• maximum parallel to a• 
den Tex, 1964; 
den Tex, .1969, 
1970] 

Mica pole of (001) maximum great circle girdle of (001) 
[Schwerdtner, 1964] parallel to a• poles normal to a•* 

Predictions are also listed by Kamb [1959] for several metals and other minerals, by Schwerdtner 
[1964] for hornblende, and by Schwerdtner [1970] for anhydrite. 

* This result is not given by Schwerdtner but it follows from substituting the elastic com- 
pliances of Alexandrov and Ryzhova [1961] (as given by Clark [1966]) into formulas 39 and 40 
of Kamb [1959]; however, the preference for the girdle over an (001) pole maximum parallel to 
aa is small. These results apply to biotite, muscovite, and phlogopite. 
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[1968a] suggests that the assumption is satisfactory for the aggregate as a whole. 
On the other hand, one would expect that, on a local scale, heterogeneity in 
the stress field would give rise to important deviations from the average situation 
and that, in particular, new grains might nucleate under local stress conditions 
that depar• markedly from the average. Kamb [1959] points out that as new 
grains grow to significant size, they must eventually come under stresses similar 
to those in the aggregate as a whole and so then conform to the general behavior; 
however, there may be thermodynamic, kinetic, or deformational factors during 
the development to this stage, the influence of which will persist during 
subsequent changes. Fletcher [1968; also private communication, 1973] has 
attempted to. take the local stress conditions around a growing crystal nucleus 
into account and he states that predicted stable orientations differ from those 
for homogeneous stress. M. A. Etheridge, M. S. Paterson, and B. E. Hobbs 
(unpublished manuscript, 1973) have also discussed the possible role of localized 
contact stresses on grains in the development of preferred orientation in synthetic 
phlogopite aggregates with a fluid phase present. Therefore there are serious 
reservations about the usefulness of the homogeneous stress hypothesis and, in 
the long run, both stress distribution and orientation are probably variables 
to be solved for when the thermodynamically (and/or kinetically) most favored 
situation is calculated. 

2. The initial grain shape can influence the predicted preferred orientation 
(especially in models lb and 2), and so special care is needed in discussing 
minerals, the grains of which are commonly inequant, e.g., micas. There is also 
a tendency to produce a change of shape (especially in model la); it should be 
noted that this effect is independent of any tendency for growth rates to depend 
intrinsically on the crystallographic orientation of the growing face, a factor not 
taken into account here (M. A. Etheridge, M. S. Paterson, and B. E. Hobbs 
(unpublished manuscript, 1973) have considered anisotropic growth rate effects). 
Also, no account has been taken of the possibility that new grains will be 
nucleated with preferred orientation. 

3. The elastic strain energy within the crystals due to the applied stress 
is the only orientation dependent factor in the internal energy taken into. account. 
However, as has often been pointed out [Verhoogen, 1951; MacDonald, 1957, 
1960; Kamb, 1959], the concomitant variations in • + any with orientation are 
very small, much less than 1 cal mole -• for quartz and calcite even under stresses 
of the order of 1 kb. Thus other variations in internal energy may also play an 
important role, e.g., grain boundary energy or stored energy from plastic 
deformation (associated with increased dislocation and other crystal defect 
content); these quantities can, in practice, be at least of magnitude comparable 
to the above [cf. Paterson, 1959; Gross, 1965]. Also, quite small changes in 
composition could be expected to produce similar variations (M. A. Etheridge 
and B. E. Hobbs, personal communication , 1972). Any such factors, as well as 
purely kinetic factors controlling the rate of migration of crystal boundaries, 
may therefore have to be taken into account in the determination of the pre- 
ferred orientation arising in recrysta!lization in a real situation, although not 
all are related to the applied stress. 
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4. There have been many other papers concerned with this problem, but 
the papers prior to Kamb [1959'] were generally not very satisfactory in their 
derivation of the conditions of equilibrium, although MacDonald [1959] did 
start out soundly on the basis of Gibbs [1906]; see Kamb [1959, 1961a] for a 
discussion of the earlier papers. In the more recent papers on the same topic, 
little significant theoretical progress seems to have been made beyond the point 
reached by Kamb [1959, 1961.a]. Although Kumazawa [1961, 1963] has some 
interesting points of view and has appreciated the role of shape, there are 
defects in his general theory (especially in regard t.o criteria of equilibrium) 
and a doubtful preoccupation with potentials [Kamb, 1961a.; McLella.n, 1966; 
Ida, 1969]; his predictions for preferred orientation have only been given in an 
abstract [Kumazawa, 1968b]. The theory of Ito [1966], which introduces 
notions from irreversible thermodynamics and places emphasis on the role of 
the orientation of the interface between crystals, is also defective in its equi- 
librium criteria because of the treatment of the work term, although the theory 
has some resemblance to Kamb's (see also comment by McLellan [1966] and 
Ida [1969]). 

De Vore [1966, 1969.a, b] and Dreyer [1970] have largely followed Mac- 
Donald's [1960] theory, as did Brace [1960], in assuming that the elastic strain 
energy is a maximum for crystals in the preferred orientation. There are sug- 
gestions that this principle (or, under uniaxial stress, the equivalent prin- 
ciple of So, der [1933, 1948] that the preferred orientation is the one with 
smallest Young's modulus parallel to the axis of greatest compressive stress) 
is obeyed in some real situations [e.g., Wenk et al., 1973]. However, such 
behavior must be for reasons independent of MacDonald's considerations, 
since his theory has already been shown by Kamb [1961a] to be invalid. Pa.rlange 
[1968] has predicted preferred orientations of recrystallized nuclei by minimizing 
a quantity «a•jqj - • ' where a' is one of the principal stresses, chosen accord- -• •ii• 

ing to a criterion of minimum work that is not easy to follow. Although east in 
the form of nucleation theory, Parlange's treatment involves thermodynamic 
considerations that are defective in the treatment of the work term (no.•e that 
the factor « in the second term is not present in either of Kamb's criteria). 

Ida[1969] follows the Gibbs-Kamb philosophy in placing emphasis on the 
concept of local equilibrium at interfaces between phases, but he expresses the 
elastic strain energy in terms of finite strains. He considers preferred orientations 
of crystals in eases where small axially symmetric ('uniaxial') stresses or shearing 
stresses are superimposed on a body under an initial hydrostatic stress, and, 
insofar as he goes, his conclusions agree with those of Ka.mb [1959], provided 
the hydrostatic pressure has not significantly affected the relative values of 
the elastic constants. However, Ida does not take Kamb's step (in model 2) of 
assuming that the behavior of a given crystal is determined by the generalized 
equivalent of • + •v for the crystal relative to its average value for the other 
crystals in the aggregate. Instead, he only goes as far as distinguishing 'simple' 
and 'complex' situations; in simple situations the local equilibrium conditions 
are independent of interface orientation and are therefore the same everywhere 
in the body, whereas in complex situations the local equilibrium conditions 
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depend on the interface orientation so that the relative stability of two adjacent 
crystals can be opposite in different parts of the same boundary [cf. Ito, 1966] 
(a somewhat analogous notion of a complex state is also contained in the 'com- 
patible structure' of Kumazawa [ 1963] ). 

F. COHERENT PHASE TRANSITIONS UNDER STRESS 

1. Theory 

Coherent phase transitions present a particularly interesting problem in non- 
hydrostatic thermodynamics because of the role of shape changes as well as 
volume changes in determining the stability fields of the phases. Shape change, 
usually expressed as the deviatoric part of a 'transformation strain,' can enter 
because the coherency between the two phases enables the configuration of 
material points (or lattices) in both phases to be uniquely related to a common 
coordinate system; then a reversible transformation strain can be meaningfully 
defined in relation to the system of phases as a. whole (such a relationship 
would be lost if, for example, arbitrary amounts of slip were permitted on the 
boundary between the phases in violation of the concept of coherency). Twinning 
can be regarded as a simple type of coherent phase transition, the shape in this 
case being the only property to be changed. Polymorphic transitions of the 
displacive type (in the classification of Buerger [1948, 1951]) constitute a 
broader class of coherent transitions. These include martensitic-type transitions 
(such as a to. 7 iron) where quite large macroscopic shear may be involved and 
'low-high' type transitions (such as • to /• quartz) involving slight changes in 
atomic configuration accompanied by only small macroscopic shears. 

The conditions of equilibrium can again be derived by arguments similar 
to those in the previous sections on the basis of the criterion that internal energy 
be a minimum under the constraints AS - AW - 0. When the interface is 

moved so that m moles of phase I are transformed to phase II under these con- 
straints, the following three quantities contribute to the total energy change' 

1. Internal energy (-u • + u•)m is added. 
2. Work -Vo•A•jv, is involved to satisfy AW - 0. A notional process simi- 

lar to that described under Kamb model 2 can be used to establish this term. 

The variable A•j is a strain tensor representing the transformation strain; it is 
related to axes in the unstrained configuration, as is the stress •r•j, but is applied 
to the strained configuration. So this expression for the work is o.nly valid for 
infinitesimal strains (see comment 1 below). Also, the molar volume V.o. enters 
here instead of v because the transformation strain is referred to the unstrained 

configuration. 
3. Heat -T(s • - s•)m is added to satisfy AS - 0. Then, from AU _• 0 

(m having any arbitrary value), the equilibrium condition becomes 

(-u • 4- u TM) - T(s TM - s •) -- Vo•i/x• = 0 
or 

A!-- Au- TAs = Voa•A•i (20) 
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where A! is the change in Helmholtz free energy and A•j is the transformation 
strain (case of infinitesimal strain only). This result is equivalent t,o that derived 
by McLellan [1970, equations 29 and 30] and expressed in terms of 'volume 
coefficients.' 

The influence of stress on the transition temperature can be obtained by 
differentiating (20) to give 

OT/O• = --VoAe•/As k, 1 = 1, 2, 3 (21) 

where O/Oa• means partial differentiation with respect to one particular stress 
component .a•, all other components of • being held constant during •he differ- 
entiation (in this differentiation, i• is assumed tha• Au, As, and A• for the 
transformation do not vary at a significant rate along the phase boundary in 
the a•-T plane). Coe .and Paterson [1969] give a rigorous and more formal 
derivation of (21) by using an appropriate thermodynamic potential. A similar 
derivation is given by Forsbergh [1956], bu• he does not prove that his Gibbs 
function has the assumed properties at equilibrium. Relation 21 is a generaliza- 
tion of the Clausius-Clapyron relation in hydrostatic situations: 

dP/dT = AS/AV (22) 

Different expressions were obtained by MacDonald [1957], Kumazawa [1961, 
1963], and Hanyga [1971]. 

In various forms, relation 21 has been applied to the martensitic trans- 
formation in an indium-thallium alloy [Burkart and Read, 1953], to a re- 
versible transition in protein fibers [Flory, 1956], to the ferroelectric Curie 
point [Forsbergh, 1956], and to the ,-fi transition in quartz [Coe and Paterson, 
1969]. As an illustration of the anisotropic nature of the stress dependence of 
• coherent phase change, the above s•udy on quartz showed that the 
transition temperature is raised by 10.6øC/kb for uniaxial compression per- 
pendicular to the c axis and by 5.0øC/kb for compression parallel to the. c axis. 
This example shows clearly that simply substituting mean stress for hydrostatic 
pressure to find the position of a phase equilibrium boundary [cf. Verhoogen, 
1951; Andrews, 1971] is incorrect for coherent transitions. 

2. Comments 

1. Relations 20 and 21 are valid only in the approximation of infinitesimal 
strain and homogeneous stress, but the same principles apply generally. Coe 
[1970] has extended the theory to finite simple shear, and McLellan [1970] 
has sketched in broad terms how a general treatment in terms of finite strain 
can be developed. Fuller treatments in finite strain have been given by A. G. 
McLellan (personal communication, 1972) and P.-Y. F. Robin (personal com- 
munication, 1973). There is, of course, a large literature on the mathematical 
procedures for dealing with finite strain, but the following papers may be 
useful as background to the application to nonhydrostatic thermodynamic prob- 
lems: Truesdell and Toupin [1960], Thurston [1964,], and Barron and Munn 
[1970]. 

2. The •rea•men• given above applies only •o first-order •ransifions, i.e., 
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those in which there is a discontinuity in entropy and dimensions at the transi- 
tion. Second-order or A-type transitions require a different treatment, such 
as that of Garland [1964], who generalized the hydrostatic theory of Pippard 
[1956, 1957] to nonhydrostatic situations; the method of Buck•ngha.m and 
Fairbank [1961] can also be used to derive the generalized Pippard relations 
[Coe and Paterson, 1969]. Many 'high-low' transitions are x transitions. Whereas 
it is debatable whether quartz is such a case, its behavior is close to that of a 
X transition and can be rationalized approximately, although not completely 
successfully, in terms of generalized Pippard relations [Coe and Paterson, 1969]. 

3. It should be emphasized that the absence of diffusion is an essential 
part of the model of a coherent phase transition. If diffusion is allowed, the 
conditions of equilibrium will be quite different [cf. McLellan, 1968; Hanyga, 
1971]. 

4. Hanyga [1971, section 6] discusses three models of phase transitions 
and suggests that one of them (model 2) represents coherent phase transitions. 
In fact, the only property that he takes into account in this model is the change 
in specific volume, 'disregarding the additional troubles associated with the 
misfit of phases across the interfaces.' His equilibrium condition [Hanyga, 1971, 
equation 33] is therefore not applicable to coherent transitions as defined above. 

5. The particular equilibrium condition (20) is independent of the orienta- 
tion of the interface. However, this independence is not a general property of 
equilibrium in nonhydrostatic situations for either coherent or incoherent transi- 
tions [cf. Ito, 1966; Ida, 1969; P.-Y. F. Robin, personal communication, 1973]. 

6. The work of Thomas and Wo,oster [1951] has shown how the applica- 
tion of stress can influence twinning (specifically, the Dauphin• twinning in 
quartz) even when there is no macroscopic twinning shear involved in the 
unstressed state. This phenomenon arises essentially through the elastic anisot- 
ropy of the crystals whereby, under a given stress, small differences can occur 
in certain strain components between the twin individuals. The transformation 
strain ,A•j above is therefore now simply the difference in the elastic strain of 
the twin individuals under the given stress due to their different orientations. 
If we designate the twin individuals as I and II, the condition A U <_ 0 for the 
change I -• II becomes from (20) 

AI - Vo•,iA•i_< 0 

or 

I II I) • 0 

• > «Voo'• • «VoO'•e• _ ie•i 

Thus the stable twin individual is the one with the greater elastic strain energy 
under the given homogoneous stress, as was postulated and experimentally 
demonstrated by Thomas and Woo.ster [1951]. The case of Dauphin6 twins of 
quartz under a given stress is therefore one to which the stability criterion of 



NONHYDROSTATIC THERMODYNAMICS 381 

maximum elastic strain energy validly applies. The discussion of Ida [1969] 
on this point is incorrect, as was pointed out by Tullis [1970], since Ida is 
essentially applying an equivalent of the Gibbs relation (8), in which the work 
term is inappropriate for coherent phase transitions. Tullis and Tullis [1973] 
give a detailed treatment of the thermodynamics of mechanical Dauphin• 
twinning, from which it should also be noted that under a given strain the twin 
individual with the minimum elastic strain energy is the stable one. The im- 
portance of the phenomenon for preferred orientation in quartz aggregates is 
discussed by Tullis [1970] and Tullis and Tullis [1973]. 

7. The treatment in this section does not apply to incoherent transitions. 
The simplest example of an incoherent transition is melting. The analysis in 
this case is formally similar to that of the equilibrium between a solid and its 
solution. In particular, the influence of a uniaxial stress on melting is given 
by equations that have the same form as (13) and (14) but in which melting 
temperature is substituted for 7c and latent heat of melting is substituted for 
RT [e.g., Williamson, 1917]. Presumably, similar relations are applicable for 
solid-solid incoherent transitions provided the assumption of homogeneous stress 
is valid (which may be doubtful, especially for nuclei of one phase embedded in 
another phase) and provided there is no work of shearing involved at the 
interface. 

G. DIFFUSION IN A STRESSED SOLID 

1. Theory 

Equilibrium with respect to diffusion through a solid under stress presents 
a situation that is somewhat different from the situations considered so far, 
which have essentially involved processes at interfaces, i.e., heterogeneous proc- 
esses. Nevertheless, a Gibbs approach can be applied, as was done by yang 
et al. [1959] in connection with equilibrium electrode potentials of stressed 
metals. We use such an approach here and follow to some extent the procedure 
of McLellan [1970], although it should be noted that his conclusions about 
equilibrium with respect to diffusion are based on a postulated Gibbs function, 
written down by analogy with functions derived for other situations. In two 
pioneering papers of central importance in this topic, Liet al. [1966, 1971] 
have followed a slightly different but equivalent argument based on the theorem 
(Moutier's theorem) that the net work done in a closed cycle under isothermal 
and reversible conditions is 0. 

The main aim here is the thermostatic one of calculating the equ•!ibrium 
concentrations of solute in a body under stress when the solute can be exchanged 
with a similar body under a different state of stress. The calculation of the 
equilibrium distribution of solute in a heterogeneously stressed body then 
follows; the concentration of solute will, of course, be uniform within a homo- 
geneously stressed body. The interest so far has centered largely in metallurgical 
applications such as the distribution of solute in the neighborhood of a dis- 
location or in the local stress field induced around an inclusion by an applied 
stress, but similar applications may be of interest in geology. 



382 M. $. PATERSON 

Consider a model system containing a solid that is under stress in one part 
and stress-•ree in another part, and suppose that there is a mobile component 
that can diffuse between the two parts. As in the problem discussed above of 
a stressed single-component solid in contact with its solution, imagine the state 
o• stress in the stressed part to be achieved by some sort o• loading frame con- 
tained entirely within the system, and take the part to be small enough that 
the stress can be regarded as uniform within it. Now consider the following 
changes that occur when a small amount, m moles, of the mobile component 
is transferred •rom the unstressed to the stressed part: 

1. The internal energy is increased by maw, where Aw is a partial molar 
elastic strain energy that can be defined as •ollows: (a) relax the stress in the 
stressed part and thereby recover the elastic strain energy Mw, where w is the 
mean molar elastic strain energy o• the stressed part and M is the total number 
o• moles of all components in it; (b) transfer the m moles of mobile component 
into this part while it is stress •ree; and (c) restore the state of stress in it by 
adding the appropriate elastic strain energy (M + m)w • (note that both the 
unstressed dimensions and the elastic properties will have been changed by 
the addition o• the m moles o• mobile component, which will result in the mean 
molar elastic strain energy being changed from w to w'); the partial molar 
strain energy Aw •or the mobile component is then defined by maw - (M + m) 
w' - Mw. 

2. Adjust the loading frame, doing work mAW on it, so as to accommodate 
the changed configuration of the parts and to restore the original position of 
the boundary of the system (AW is the work done on the surroundings when 
1 mole of the mobile component is transferred from an unstressed part •o a 
stressed part of the solid). An additional amount of work -mAW must •hen also 
be done on the system to establish the condition that no net work is done on 
the system. 

3. So that AS - 0, add an amount of heat --mTAs, where As -- s' - s; 
s' and s are the partial molar entropies of the mobile component in the stressed 
and uns•ressed parts, respectively. 

Therefore, applying the equilibrium condition A U - 0 under the constraint 
AS - AW - 0, we have AU - maw - mAW - mT.zXs - 0 for arbitrary m; i.e., 

Aw- TAs- AW (23) 

or 

at equilibrium, where Af is the change in Helmholtz free energy. 
Liet al. [1966, expressions 6 and 7] have given formulas for Aw and AW 

that can be written as follows: 

Aw = i• • v.•si • (1--c)vOs• ß ß • Oc 2 • d• (25) 
= - c) o,/oc 

i 
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where a•, e•, and s• (i, j = 1, 2, -.. , 6) are the stress and strain components and 
elastic compliances, respectively, in contracted or matrix notation [Nye, 1957], 
vm is the partial molar volume of the mobile component, v is the mean molar 
volume of the solid solution, and c is the concentration (mole fraction) of solute. 
Note that the notation Aw and A W used here is equivalent to the •k and W• 
used by Liet al. [1966]. The quantity TAs contains terms that depend on the 
concentration. Therefore, to obtain explicit expressions for the relative concen- 
trations of the mobile component in the stressed and unstressed parts in equi- 
librium, further development of the equilibrium condition (23) or (24) is needed. 
This development is conveniently done in terms of chemical potentials by using 
the definition given by (4). 

A chemical potential can be satisfactorily ascribed to the mobile com- 
ponent under the present constraints, which are that the component can move 
freely within the system without relaxing stresses where they exist (cf. Li et al. 
[1966] for a rationalization of the use of chemical potentials in these circum- 
stances). In analogy with the usual procedure for solutions [e.g., Denbigh, 1966, 
chapter 9] the chemical potential of the mobile component can be written in 
the form 

• ---- •*(o',i, T) -]- RT In 7c (27) 

which defines an activity coefficient 7 for the mobile component at the molar 
concentration c and at a point where the stress is a ii and the temperature is T; 
R is the gas constant, and •*(a•i, T) is constant for changes of composition at 
constant stress and temperature. This form permits the roles of stress and con- 
centration to be separated. 

In the model above the chemical potential of the mobile component in the 
parts under zero stress and under stress 6 -- a• can then be written, respectively, as 

•o = •*(0, T) + RT In •oCo (28) 

• = •*(•, T) •- RT In •c• (29) 

where •o and • and Co and c• are the activity co&ficients and concentrations, 
respectively, of the mobile component in the unstressed and stressed parts. How- 
ever, at equilibrium the chemical potential is everywhere the same; i.e., at equi- 
librium 

•*(0, T) + RT In •oCo = •*(•, T) + RT In •c• 

or 

RT In 7•c• = _ [•.(6, T) - •*(0, T)] (30) 
•oCo 

Since the temperature is also everywhere the same at equilibrium, the quantity 
on the right-hand side of (30) is associated only with the difference in s•ress 
in the two par•s. Because of (4), this quanfi•y is equal to •he change in in•ernal 
energy involved in transferring i mole of mobile component from the unstressed 
part to the stressed part under the constraints that no work is done on and no 
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hea• is added •o the system, i.e., •he constraints under which •he chemical 
potential is defined in (4). These constraints are met for •he sum of the •erms 
i and 2 of •he energy balance listed earlier in •his section (namely, •Xw - •XW) 
so •ha• 

RT In •c•/•oCo = -Aw + AW (31) 

From (31) •he relation given by Li et al. [1966, equation 26] for positional 
variation of composition in an inhomogeneously stressed system follows by 
substituting from (25) and (26) and by making •he approximations •ha• •hey 
men•ion. 

I• may be no•ed tha•, because of •he equilibrium condition (23), (31) 
can also be written as 

RT In •c•/•oCo : -TAs 

or 

As = -R In •c•/•oCo (32) 

This equation is simply a roundabou• way of showing •ha• As is •he difference 
in partial molar entropy of mixing for •he mobile componen• between •he 
s•ressed and uns•ressed par•s. 

2. Comments 

1. In •he above model •he concentration of •he mobile componen• in a 
region at a particular s•ress has been derived relative to •he concentration 
in a s•ress-free region of •he same solid in diffusional equilibrium with •he 
s•ressed region in respec• of •he mobile component. This reference s•a•e is 
purely a ma•ter of convenience, as was •he use by Liet al. [1966] of a reference 
fluid containing •he componen• in solution and being in equilibrium wi•h •he 
s•ressed solid. Any other reference s•a•e such as •he solid in a reference s•a•e 
of s•ress could have been used (compare •he derivation of •he positional varia- 
tion of composition in an inhomogeneously s•ressed solid, mentioned above). 

2. The theory of •he above model only applies s•ric•ly •o interstitial solid 
solutions or equivalen• situations in which •he mobile componen• of in•eres• 
can move in a way •ha• is qui•e independent of •he movement of any other 
components. Liet al. [1971] poin• ou• •hat this restriction excludes substi•u•ional 
solid solutions because subs•i•utional a•oms canno• move by themselves bu• 
can only move by exchange wi•h vacancies. However, provided tha• •he elastic 
s•rain can be defined wi•h respect •o a lattice or similar sor• of natural co- 
ordinate system that can be identified a• all s•ages (implying conservation 
of lattice si•es), Liet al. show •ha• •he diffusional equilibrium of substi•u•ional 
a•oms can be •rea•ed by considering a reaction' 

lattice atom •--- interstitial + vacancy 

This reaction leads to an expression similar to (31) excep• •hat •he equilibrium 
constants for •he reaction in •he s•ressed and uns•ressed sta•es appear in place 
of •he quantities 7c. Li e• al. also poin• ou• •ha• such an expression is very 
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general and can be applied to any chemical reaction in a stressed solid. The 
terms Aw and AW are now called the (molar) strain energy of reaction and the 
work of reaction, respectively. 

3. Several applications of the theory have been considered by Liet al. 
[1966, 1971]. These applications include the distribution of nitrogen in ferrite 
containing inclusions with which a stress field is associated and the distribution 
of solute around dislocations; the latter topic has often been treated in the 
metallurgical literature [e.g., Cottrell, 1953, p. 56; Friedel, 1964, chapter 13; 
Hirth and Lothe, 1968, chapter 14], but the thermodynamic principles have not 
usually been very clearly set out. The form of AW is much simplified if the 
lattice strains are purely dilatational; this form can often be expected in simple 
systems (e.g., in cubic crystal structures), but, in general, the strains associated 
with change in concentration of the mobile component can be anisotropic, as, 
for example, in the absorption of moisture in wood [cf. Gurney, 1947]. 

4. The present discussion refers only to equilibrium with respect to the 
distribution of a mobile component in a stressed solid, not to the transport 
problem that exists when the system is not at equilibrium. However, the chemical 
potentials that have been established above for local equilibrium can be carried 
over in the usual way as 'driving forces' into discussions of the rates of diffusion 
under the basic assumptions upon which irreversible thermodynamic treatments 
rest. Such considerations are involved, for example, in Nabarro-Herring creep 
(note that in the light of this section it is not immediately obvious that the 
use of the Kamb chemical potential by Green [1970] in his treatment of creep by 
lattice diffusion is strictly correct, although its use is fully applicable in his 
grain boundary diffusion model; however, in practice, the use of the Kamb 
chemical potential leads to substantially the same creep law as that obtained 
by other approaches). 

H. CONCLUSION 

This review has examined the literature on nonhydrostatic thermodynamics 
with special regard to its application in geologic problems. Despite the subjecUs 
reputation for difficulty, controversy, and obscurity, there is a well-established 
basis of theory that has been successfully developed in several important areas. 
It is therefore possible, at least in principle, to predict the practical implications 
of assumed models of situations involving equilibrium with respect to processes 
occurring under nonhydrostatic conditions. ' 

It must be emphasized, however, that it is always important to distinguish 
clearly between the valid prediction of the implications of an assumed model 
and the validity of the model itself in representing the essential characteristics 
of the practical situations to which it is supposed to be relevant. This review has 
been concerned with the former aspect. To what extent equilibrium thermo- 
dynamic arguments are relevant to given real situations is a bigger question. 
These arguments are probably always important in setting limits or points 
of reference, but often in practice it will be in kinetic factors that the explanation 
of many phenomena will be found. 
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