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[1] Previous rotary shear experiments, performed on a halite-muscovite fault gouge
analogue system have shown that the presence of phyllosilicates, under conditions
favoring the operation of cataclasis and pressure solution in the matrix phase, can have
major effects on the frictional behavior of gouges. While 100% halite and 100%
muscovite samples exhibit rate-independent frictional/brittle behavior, the strength of
mixtures containing 10–30% muscovite is both normal stress and sliding velocity-
dependent. At high sliding velocities (>1 mm s�1), such mixtures show unusually marked
velocity weakening, along with the development of a structureless, cataclastic
microstructure. In the present paper, a micromechanical model is developed in an attempt
to explain this behavior. The model assumes a granular flow process involving
competition between intergranular dilatation and compaction by pressure solution. The
predictions of the model agree favorably with the experimental results. Extension of the
model to quartz-mica systems implies that the presence of phyllosilicates plus the
operation of pressure solution can strongly promote (unstable) velocity-weakening
behavior at rapid slip rates on natural faults, under midcrustal conditions. Static stress drop
predictions based on the model agree reasonably well with estimates from seismic
observations. Our results may help explain the discrepancy between laboratory-derived
rate-and-state friction parameter values, obtained for dry, low-strain and/or single-phase
rock systems, and the values for natural fault rocks inferred from seismological data.
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1. Introduction

[2] In recent decades, much experimental effort has been
focused on quantifying the frictional behavior of faults, in
order to help understand seismogenesis and the seismic
cycle. Of particular interest is the phenomenon of velocity
weakening, which occurs when fault rock strength decreases
with increasing displacement rate. Velocity weakening is a
prerequisite for generating a slip instability, i.e., for
generating earthquakes [e.g., Marone, 1998; Scholz, 2002].
[3] Laboratory results obtained from mostly room

temperature and/or dry constant sliding rate experiments
on bare rock interfaces and gouge-filled faults, typically
show stable, velocity-strengthening sliding friction at 0.6–
0.8 times the applied normal stress [e.g., Byerlee, 1978,
1967; Dieterich, 1972; Jackson and Dunn, 1974; Scholz,
2002]. Under appropriate conditions (i.e., for most of the
bare rock interface studies and dense gouges at larger

strains), velocity weakening is observed in such experi-
ments in association with localization of deformation along
boundary-parallel Y shear bands [Bos et al., 2000b; Chester
and Logan, 1990]. In addition, laboratory data on gouges
and bare rock surfaces show important time-dependent
(transient) effects when sliding velocity is changed [e.g.,
Byerlee and Summers, 1975; Dieterich, 1979;Marone et al.,
1990; Tullis, 1988].
[4] Quantitative analysis of the mechanical data obtained

in rock friction experiments is usually done using the
so-called rate-and-state friction laws (RSF laws hereafter)
developed by Dieterich [1978, 1979] and Ruina [1983].
Dieterich [1978, 1979] proposed that the time or rate depen-
dence of frictional strength is due to processes that affect the
true area of solid-solid contact between the sliding surfaces.
During a period of reduced slip rate or of zero macroscopic
slip, the true area of contact is envisaged to increase due to
creep of the existing contact points or asperities. Upon
shearing at increased slip rates, the increased contact area
leads to increased shear resistance and a large applied shear
stress is required to overcome it (‘‘the direct effect’’). The
shear stress then evolves toward a new steady state value
during which time a new population of contact points is
created (‘‘the evolution effect’’, see Figure 1). Velocity
strengthening occurs when the steady state contact area at
higher velocity is larger and velocity weakening occurs when
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the steady state contact area at higher velocity is lower. This
type of behavior can be expressed in mathematical form
using the relation

m ¼ m0 þ a ln
V

V0

� �
þ b ln

V0q
Dc

� �
ð1Þ

which fits a wide range of experimental data well but has no
quantitative mechanistic basis [Dieterich, 1978, 1979;
Ruina, 1983]. In equation (1), m is the instantaneous friction
coefficient (shear stress divided by the normal stress), m0 is
a reference friction coefficient at a reference sliding velocity
V0, V is the instantaneous sliding velocity, a is a parameter
that reflects the magnitude of the direct effect (second right-
hand term), b reflects the magnitude of the stress drop
associated with the evolution effect, q is a (micro)physical
state variable that represents the state of the sliding surface,
and Dc is a characteristic sliding distance over which the
evolution effect takes place. Stable, velocity strengthening
slip occurs when (a � b) � 0, whereas unstable, velocity-
weakening slip occurs when (a � b) < 0.
[5] The classical RSF equations are purely empirical and

application of lab-derived RSF parameters to natural con-
ditions is generally done without much consideration of the
(micro)physical processes operating in natural fault zones
under hydrothermal, midcrustal conditions. Nonetheless,
they are widely used to model earthquake and faulting
phenomena [e.g., Beeler et al., 2001; Ben-Zion and Rice,
1995, 1997; Cao and Aki, 1986; Dieterich, 1994; Marone,
1998; Scholz, 2002; Sleep, 1997]. Use of laboratory-derived
a and b values of the order of 0.01–0.02 and 0.0–0.02,
respectively, usually gives reasonable modeling results, but
the critical displacement parameter, Dc, typically has to be
set in the range of 1–100 cm, contrary to the much lower
lab-derived values of �10 mm. Modeling results obtained
using these values of a, b, and Dc compare favorably with
field-derived data on postseismic creep displacement,
moment and rupture area [Ben-Zion and Rice, 1997; Stuart
and Tullis, 1995; Tullis, 1996]. However, laboratory-derived
estimates of fault strength and seismic stress drop differ
significantly from the strengths of mature fault zones
inferred from heat flow and stress orientation data [Guatteri
and Spudich, 1998; see also Nakatani and Scholz, 2004].

[6] Uncertainty and controversy therefore remain in the
application and up-scaling of lab-derived RSF parameters to
model natural fault motion and seismogenesis. The central
problem lies in finding a (micro)physical basis to extrapo-
late reliably laboratory values of the RSF parameters a, b,
and Dc to the spatial and temporal scales relevant to natural
faults. Laboratory studies are limited in total displacement
and roughness of the gouge zone, which means that
processes such as wear, fault zone widening, shear locali-
zation and microstructural development cannot easily be
taken into account. Time and strain limitations also mean
that effects of fluid-rock interaction, phyllosilicate produc-
tion and foliation development are not sufficiently well
understood to be reliably accounted for in extrapolation
and upscaling of a, b, and Dc values to nature.
[7] To investigate the effects of fluids, strain, microstruc-

tural development, and the presence of phyllosilicates, we
recently reported an experimental study on simulated phyl-
losilicate-bearing fault rocks consisting of halite-muscovite
mixtures plus saturated brine as the pore fluid [see
Niemeijer and Spiers, 2005; Niemeijer and Spiers, 2006].
In the pure end-member samples tested at high sliding rates
(>1 mm s�1), we observed more or less velocity-neutral
behavior. In contrast, mixtures of halite and muscovite
showed strong velocity weakening. We observed (a � b)
values of around 0.1 and critical displacements of �0.5–
1 mm; these values are an order of magnitude higher than
previously reported (a � b) and Dc values for dry and/or
room temperature experiments. The associated microstruc-
tures are complex with evidence for cataclastic flow and the
operation of pressure solution. We interpreted the observed
deformation behavior to result from competition between
shear-induced intergranular dilatation and normal-stress-
driven compaction by pressure solution, with muscovite
preventing intergranular healing. Since many fault zones are
phyllosilicate-rich, the question arises as to whether such
effects will occur in natural fault rocks. If so, their role might
be very important in bringing about velocity weakening,
and hence seismogenesis.
[8] In this paper, we attempt to assess the possible role of

phyllosilicates in causing velocity weakening of faults
under conditions where pressure solution processes are
active. To do so, we present a simple microphysical model,
incorporating the proposed competition between dilatation
and compaction, and we compare the predicted steady state
strengths with our experimental results for the salt/
muscovite plus brine system. We go on to extrapolate the
model to quartz-muscovite fault gouges under natural
conditions, using the appropriate kinetic equations for
compaction of quartz by pressure solution. Finally, we
predict the static stress drop expected when a rupture
propagates from a strong asperity within a fault zone into
velocity-weakening muscovite-bearing fault rock, compar-
ing our results with data on estimates of stress drop
retrieved from analysis of seismic data.

2. Velocity-Weakening Effect in Simulated
Phyllosilicate-Bearing Fault Gouge

[9] Before attempting to construct a microphysical model
for the velocity-weakening process of interest, it is useful to
review the experiments that show this effect. Niemeijer and

Figure 1. Plot showing the effect of a step in sliding
velocity on the friction coefficient for a hypothetical
velocity-strengthening material.
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Spiers [2005, 2006] performed high-strain rotary shear
experiments on fault gouges consisting of halite-muscovite
mixtures flooded with saturated brine at room temperature.
For mixtures in the range 10–50 wt % muscovite, we

observed a strong dependence of steady state shear strength
on sliding velocity and on normal stress (Figure 2). In
contrast, samples consisting of pure halite or pure muscovite
showed almost no dependence of shear strength on sliding
velocity. For a simulated fault gouge consisting of 20 wt %
muscovite and 80 wt % halite, the steady state shear
strength increases, with increasing sliding velocity, from a
minimum value of 1.8 MPa to a peak value of 4 MPa (at a
normal stress of 5 MPa) and subsequently decreases to a
minimum value of 2 MPa. Note that all these experiments
were done after a dry run-in phase of 50 mm displacement
at 5 MPa.
[10] In Figure 3, we show the typical microstructures

characterizing the two velocity regimes. In the velocity
strengthening regime, the gouge is dense and apparently
mylonitic, with a continuous, anastomosing foliation con-
sisting of aligned muscovite flakes and intervening, elon-
gated halite grains [see also Bos et al., 2000a; Bos and
Spiers, 2000, 2001, 2002]. In contrast, the typical micro-
structure in the velocity-weakening regime is chaotic, with
no foliation and a large variation in grain size. Moreover,
gouge porosity determinations made after deformation show
increased steady state porosity with increasing sliding
velocity (Figure 4). Following Bos et al. [2000a], Bos and
Spiers [2002], Niemeijer and Spiers [2005, 2006] proposed
that deformation in the velocity-strengthening regime is
accommodated by slip on/over the muscovite foliation
accommodated by pressure solution of (solution transfer
around) the intervening halite grains. The displacement rate
is so slow in this regime, that the tendency for dilatation by
slip on/in the foliation is largely countered by compaction
through pressure solution; thus the porosity remains low
(1–5%). A microphysical model for this type of behavior
was developed by Bos and Spiers [2002] and improved by
Niemeijer and Spiers [2005, 2006], taking into account the
onset of dilatation toward faster slip rates where pressure
solution can no longer fully accommodate slip on the
foliation.
[11] For the velocity-weakening regime, Niemeijer and

Spiers [2005, 2006] proposed that deformation involves a
transition to pervasive granular flow of the halite/muscovite
mixtures, with ongoing competition between shear-induced
intergranular dilatation and compaction via solution transfer
processes. Such competition implies an increase in steady

Figure 2. Plot of steady state stress versus sliding velocity
for a set of brine-flooded rotary shear experiments at 5 MPa
normal stress and room temperature.

Figure 3. Typical microstructures characteristic of the two
velocity regimes. (a) Low sliding velocity (0.03 mm s�1).
Note the anastomosing muscovite foliation with intervening
halite clasts. Total strain and shear sense as indicated.
(b) High sliding velocity (13 mm s�1). Note the chaotic
microstructure and high porosity. Total strain and shear
sense are indicated.

Figure 4. Plot of final porosity of constant sliding velocity
experiments on simulated fault gouge of salt-muscovite
mixtures with 20 wt % muscovite versus sliding velocity.

B10405 NIEMEIJER AND SPIERS: MODEL FOR STRONG VELOCITY WEAKENING

3 of 12

B10405



state porosity with increasing sliding velocity, hence a
decrease in effective sliding contact area and in dilatation
angle and/or in contact strength (due to reduced time-
dependent healing); these will thus contribute to the
observed velocity weakening and volumetric behavior
(Figures 2 and 4). In the following,wederive amicrophysical
model describing this competition between dilatation and
compaction and compare the results with our experimental
data.

3. Model Development

[12] To develop a model for the behavior inferred to occur
in our halite-muscovite gouges at high sliding velocities
(i.e., in the velocity-weakening regime), we start by
defining a microstructural model for the granular gouge.
We then set up equations relating porosity evolution to the
volume-changing deformation mechanisms that are
assumed to operate, namely granular flow and pressure
solution. We next proceed to derive relations for the contact
forces operating in our gouge and the shear resistance
offered to purely granular flow. From this, we obtain our
final equation for the steady state shear strength of our
modeled gouge, which we compare with our experimental
results. Note that we do not attempt to include grain size
reduction in this first modeling attempt, although grain size
reduction is important in natural fault gouges. However, in
our experiments grain size reduction is not important in the
steady state part of the experiments (due to a dry run-in
shear phase of 50 mm of displacement [see Niemeijer and
Spiers, 2005, 2006]).

3.1. Microstructural Model and Associated State
Variables

[13] The essential elements of the gouge microstructure
that we assume in our model are shown in Figure 5. For
geometric simplicity, the volume fraction of muscovite is
considered negligible with respect to the total gouge
volume, which is probably reasonable for a volume
percentage of muscovite up to 15%.
[14] We assume that shear deformation of the gouge

occurs predominantly by a process of uniformly distributed
granular flow with grain neighbor swapping plus frictional
slip on the intergranular muscovite. Slip on the inclined
contacts (average inclination angle y) leads to dilatation
with a dilatancy angle y . Pressure solution on these, as well
as surrounding contacts, causes a component of both
compaction and shear deformation. The microstructure is
viewed as an idealized snapshot in time of a self-randomizing
system whose average porosity (f) and average dilatancy
angle (y) evolve with ongoing shear, depending on the
competition between dilatation and compaction.
[15] To quantify the evolution of dilatation rate, inter-

granular stresses, and compaction rate by intergranular
pressure solution, relations must now be obtained linking
the relevant microstructural state variables of average dilat-
ancy angle (y) and average grain contact area (Ac) to
porosity (f). A similar problem is encountered in critical
state soil mechanics in modeling the shearing behavior of
sands from the overconsolidated or underconsolidated state
toward the critical state at which shear strength and porosity
remain constant. In soil mechanics, this evolution is usually
modeled using a discrete element approach to granular flow
[Brown and Shie, 1990; Chen and Martin, 2002; Muqtadir
and Desai, 1986; Yang and Jeremic, 2002] but such
approaches have so far been restricted to considering mainly
elastic/frictional interactions between grains. We have there-
fore chosen to establish a very simple set of microstructural
equations relating tan y and Ac to porosity f. While these
are clearly oversimplifications, and may not be fully inter-
nally consistent with the assumed microstructural model,
they embody the trends known to occur in granular media
and they satisfy a number of crucial microstructural con-
straints, as shown below.
[16] In establishing our microstructural relations, we first

assume that compaction by pressure solution ensures that
the gouge porosity never exceeds the critical state value for
pure granular flow. This implies that the granular flow
component of our models always tends to produce dilatation
and that tan y � 0. Thus, at typical critical state porosities
fc of say 40%, tan y = 0. On the other hand, at zero
porosity, two extreme gouge microstructures can be envis-
aged in two dimensions, as shown in Figure 6. At the onset
of granular flow, these microstructures imply dilatancy
angles given as tan y = 1/

p
3 and tan y =

p
3 (Figures 6a

and 6b, respectively).
[17] To capture the tendency for the dilatancy angle to

decrease with increasing porosity, as seen in shear tests on
subcritical granular media [Bouckovalas et al., 2003; Xenaki
and Athanasopoulos, 2003], we accordingly assume that tan
y can be approximated by a function of the form

tany ¼ H q� 2fð Þn ð2Þ

Figure 5. Assumed two-dimensional geometry of a gouge
sliding at high sliding velocities by granular flow. Gray
lines indicate phyllosilicate phase, white circles denote the
soluble phase (i.e., salt), and y is the dilatancy angle. The
macroscopic normal and shear stress and strain rate are
given by sn, t, _et and _gt, respectively. The shear (or sliding)
velocity is v and the thickness of the gouges is denoted by Lt.
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where H takes values in the range 1/
p
3 to

p
3 and q = 2fc

(q 	 0.8–1). This describes a monotonic decrease in tan y
as f increases, while satisfying the constraints that tany 	 H
when f = 0 and tan y = 0 when f = fc. In the absence of
any constraints on n, we take n = 1 for present purposes.
Use of equation (2) is then equivalent to defining the
microstructural properties of the gouge such that (2) is
obeyed. Note, however, that a best fit value of n could be
determined empirically for any gouge deforming by
granular flow only.
[18] To describe how the average grain-to-grain contact

area (Ac) depends on gouge porosity, we adopt a similar
approach. We assume that Ac ! 0 at high porosities
approaching critical state values fc of say 40–45%. At
zero porosity, we assume that Ac ! pd2/z, where z is the
average grain packing coordination number, d is the average
grain diameter and pd2 is the equivalent surface area of a
spherical grain of diameter d. At intermediate porosities of
5–35%, an analysis of the geometry of a simple cubic, or
body-centered cubic pack of initially spherical grains
compacting isotropically by pressure solution [Gundersen
et al., 2002; Renard et al., 2000, 1999] shows that the
relation between contact area and porosity is well described
by the relation

Ac ¼ kpd2 q� 2fð Þ ð3Þ

where q again takes a value of 0.8–1 and k 	 1/z [see
Spiers et al., 2004]. This relation satisfies the requirement
that Ac ! 0 as f ! fc and Ac ! pd2/z as f ! 0, and has
been used as a way of approximating grain contact area in
previous models of compaction by pressure solution [Spiers

et al., 2004]. We use it here assuming that it also holds for
the average grain contact area in a gouge material
undergoing simultaneous granular flow plus compaction
by pressure solution.

3.2. Kinematic Relations for Gouge Deformation by
Granular Flow Plus Pressure Solution

[19] Shearing of a fault gouge that can deform by com-
bined granular flow plus pressure solution (Figure 5) will
lead to total normal and shear strain rates given by

_et ¼ _eps þ _egr ð4aÞ

and

_gt ¼ _gps þ _ggr ð4bÞ

where compaction is taken positive and the subscripts ps
and gr represent the strain rate contributions by pressure
solution and granular flow, respectively. Following the
classical soil mechanics approach to granular flow [see also
Paterson, 1995], dilatation due to the granular flow
component of deformation can be described using the
relation

_egr ¼
degr
dt

¼ degr
dggr

 !
dggr
dt

¼ � tanyð Þ _ggr ð5Þ

where y is the dilatancy angle for pure granular flow.
Combining this with (4a) we get

_et ¼ _eps � tanyð Þ _ggr ð6Þ

[20] In the case of rapid shear, the shear strain rate
contribution due to pressure solution processes in (4b) will
be negligible compared with the contribution due to
granular flow, so that _gt 	 _ggr. Thus we get

_et 	 _eps � tanyð Þ _gt ð7aÞ

and

_egr 	 � tanyð Þ _gt ð7bÞ

[21] Since pressure solution compaction rates increase
with increasing porosity through the associated decrease
in contact area, equation (7a) demonstrates that rapid
shearing of a dense gouge will cause dilatation until a
steady state is reached where pressure solution balances
dilatation. For these steady state conditions, where net
compaction is zero, equation (7a) accordingly yields

_eps ¼ tanyð Þ _gt ð8Þ

[22] On combining with equation (2) for the relation
between dilatancy angle and porosity, and taking n = 1 in
(2), this gives

_eps ¼ _gtH q� 2fð Þ ð9Þ

Figure 6. Microstructural geometries for an aggregate of
two-dimensional grains with zero porosity. These two cases
yield the boundary values for the dilatancy angle, as
indicated by y. Bold lines indicate the sliding surfaces,
which are occupied by phyllosilicates.
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for the balance between pressure solution compaction and
granular dilatation at steady state.

3.3. Rate of Compaction by Pressure Solution

[23] To obtain expressions for _eps, the compaction rate of
the gouge due to pressure solution, we assume that the
gouge compacts like an isotropic material, so that the effects
of normal stress and shear stress can be considered
separately. Under these conditions, pressure solution com-
paction normal to the gouge will be similar to uniaxial one-
dimensional (1-D) compaction under an effective normal
stress, sn. Previous analyses of pressure solution compaction
using equation (3) to describe the porosity dependence of
mean grain contact area within a compacting granular mate-
rial [Spiers et al., 2004] have yielded the following results:

_es ¼ As

Is

d

seWs

RT
fs fð Þ for dissolution control ð10aÞ

_ed ¼ Ad

DCSð Þ
d3

seWs

RT
fd fð Þ for grain boundary diffusion control

ð10bÞ

_ep ¼ Ap

Ip

d

seWs

RT
fp fð Þ for precipitation control ð10cÞ

[24] Here, _ex represents volumetric strain rate (s�1) for
the cases of dissolution, diffusion or precipitation control
(subscripts x = s, d, p), the Ax are geometric constants, Is and
Ip are the velocities of dissolution and precipitation, respec-
tively (m s�1), d is the grain size (m), se is the applied
effective stress (Pa), Ws is the molar volume (m3 mol�1), R is
the universal gas constant (J mol�1 K�1), T is the absolute
temperature (K), fx(f) are dimensionless functions of
porosity (f) that account for changes in grain contact area,
transport length and pore wall area, D is the diffusion
coefficient in the grain boundary fluid (m2 s�1), C is the
solubility of the solute in the grain boundary fluid (m3 m�3)
and S is the effective thickness of the grain boundary fluid
(m, see also Table 1).

[25] For porosities in the range 5–40%, it is easily shown
[Spiers et al., 2004] that the geometry of a regular grain
pack implies that

fs 	
1

q� 2fð Þ ð11aÞ

fd 	
1

q� 2fð Þ2
ð11bÞ

fp 	
2f

q� 2fð Þ2
ð11cÞ

as indicated by Spiers et al. [2004].

3.4. Porosity and Dilatancy Angle at Steady State

[26] Inserting the above expressions for pressure solution
compaction rate into equation (8) we can now obtain results
describing the steady state porosity developed when pres-
sure solution is controlled by dissolution, diffusion and
precipitation, respectively:

fss 	
1

2
q� As

Is

d
� seWs

R � T � 1

_gt � H

� �1
2

( )
ð12aÞ

fss 	
1

2
q� Ad

DCS

d3
� seWs

R � T � 1

_gt � H

� �1
3

( )
ð12bÞ

q� 2fssð Þ3

2fss

	 Ap �
Ip

d
� seWs

R � T
1

_gH
ð12cÞ

[27] We can also use equation (2) to obtain the dilatancy
angle yss at steady state for each rate controlling process.

3.5. Contact Forces and Shear Resistance to Granular
Flow

[28] Our next step is to find the forces and stresses on
inclined grain contacts and an expression for the shear
resistance to pure granular flow. We use the assumed 2-D
geometry shown in Figure 7 to estimate the contact forces
and stresses in our model gouge. Recall that shear defor-
mation is assumed to involve a main flow mechanism of
self-randomizing grain neighbor swapping with frictional
slip on the inclined contacts. Assuming further that grain
rotation effects can be neglected when the bulk of the
imposed shear displacement is accommodated on the
inclined contacts, then the forces acting on each individual
grain can be written as

Fh ¼ tx2 ð13aÞ

and

Fv ¼ snx
2 ð13bÞ

Table 1. List of Parameters and Values (When Applicable) Used

in the High-Velocity and Low-Velocity Modelsa

Parameter Description Value (Range)

f porosity 0–45%
y dilatancy angle -
se effective stress -
Ac average grain contact area -
H geometrical parameter describing

two potential zero
porosity geometries

1/
p
3–

p
3

q 2 times starting porosity 0.8–1
k IPS geometrical factor 1/6
z grain coordination number 6
d average grain size 20–50 mm
D diffusion coefficient 10�11 m2 s�1

C equilibrium solubility 0.163 m3 m�3

S grain boundary thickness 100 nm
Is dissolution rate 10(�3835.5/T�4.4173)

aDiffusion coefficient, solubility, and grain boundary thickness are for
halite at room temperature, and dissolution rate is for quartz.
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[29] Force balance considerations normal and parallel to
the sliding contacts require that:

~fn ¼ Fv cosy þ Fh siny ð14aÞ

and

~fs ¼ Fh cosy � Fv siny ð14bÞ

[30] In these relations, the tilde embellishment denotes
the forces on the contacts, and the subscripts n, s, v and
h denote normal, shear, vertical and horizontal forces,
respectively. Combining equations (13) and (14) gives

~fn ¼ snx
2 cosy þ tx2 siny ð15aÞ

and

~fs ¼ tx2 cosy � snx
2 siny ð15bÞ

[31] To a first approximation, if the grain size of the
‘‘spherical’’ grain is d, we have x 	 d (see Figure 7). Using
our expression for the contact area (Ac) obtained assuming
grain-to-grain truncation by pressure solution compaction
(equation 3), the contact stresses are now given

~sn ¼
~fn
Ac

¼
~fn

d2kp q� 2fð Þ ¼
1

kp q� 2fð Þ sn cosy þ t sinyð Þ

ð16Þ

~t ¼
~fs
Ac

¼
~fs

d2kp q� 2fð Þ ¼
1

kp q� 2fð Þ t cosy � sn sinyð Þ

ð17Þ

[32] However, individual contacts must satisfy a slip
criterion during granular flow which we assume to have
the form of a Coulomb-type criterion given as

~f ¼ ~S0 þ ~m~sn ð18aÞ

or

~fs ¼ ~f0 þ ~m~fn ð18bÞ

where ~f 0 = ~S0 Ac = kpd2 (q � 2f) � ~S0 and ~S0 is the cohesion
of grain contacts. This represents slip on or within the
muscovite-coated contact, whichever is weaker. From (16),
(17) and (18) it follows that

t cosy � sn sinyð Þ
kp q� 2fð Þ ¼ ~S0 þ

~m sn cosy þ t sinyð Þ
kp q� 2fð Þ ð19Þ

which, since tan y = H(q � 2f), yields

t ¼ kp
H

tany
cosy � ~m siny

� �
� ~S0 þ

siny þ ~m cosyð Þ
cosy � ~m sinyð Þ sn ð20Þ

for the shear resistance to pure granular flow in a gouge
of a given porosity and average grain contact area Ac =
kpd2(q � 2f).

4. Model Predictions and Comparison With
Experiments

[33] In the following, we apply our model to predict the
behavior of our halite/muscovite gouges and we compare
the results with our experimental results for this system in
the velocity-weakening regime (>1 mm s�1). For the kinet-
ics of pressure solution compaction in the halite-muscovite
system, we used the pressure solution parameters taken
from 1-D uniaxial compaction experiments by Spiers et
al. [1990]. We assume grain sizes of 20–40 mm in accor-
dance with grain sizes observed after deformation. In line
with values expected for a simple grain pack, we have taken
the geometrical constant q to be 0.8 (about twice the
maximum likely porosity of �0.4), H to lie in the range
1/
p
3 to

p
3 and k to be 1/6. We have taken the grain

boundary friction coefficient to be 0.2, 0.3 and 0.4, which
includes the value of 0.31 measured for muscovite in pure
muscovite tests [see Niemeijer and Spiers, 2005].
[34] In Figure 8, we show the results given by our

microphysical model, along with the experimental data for
the sample containing 20 wt % muscovite (equivalent to
�13 vol % for a gouge with 15% porosity). In Figure 8a, we
show the variation of the model predictions with varying
grain size. It shows that the variation in predicted shear
stresses is not strongly dependent on grain size and that a
grain size of 20–30 mm would fit best with our experimen-
tal data. The overall trend of the model is somewhat flatter
than the experimental data show, but this might be an effect
of varying grain size in the experiments. Figure 8b shows
the variation of the model predictions as a function of the
grain boundary friction coefficient m. The plot shows a
relatively strong dependence of the predicted shear stress on
the grain boundary friction coefficient, especially at high
sliding velocities. In contrast, the shear stresses predicted
using our microphysical model do not depend strongly on
the geometrical term H or the grain boundary cohesion, S0,
as shown in Figures 8c and 8d.
[35] In summary, our relatively simple microphysical

model is capable of predicting the observed velocity

Figure 7. Assumed two-dimensional geometry of a gouge
sliding at high sliding velocities by granular flow. Contact
forces and geometries are indicated. Gray lines indicate
phyllosilicates.
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weakening to within �0.2 MPa, choosing mid range values
of grain size, grain boundary friction coefficient, H and S0.
However, across the entire range of velocities modeled, the
predictions are strongly dependent on the grain boundary

friction coefficient, which is poorly known in the experi-
mental gouges, because the relative strength and importance
of halite-halite contacts (cemented and uncemented), halite-
muscovite contacts and muscovite-muscovite contacts are
unknown. Still, noting that the friction coefficient for pure
muscovite gouge is 0.31, and that this value explains the
frictional behavior of foliated halite/muscovite gouges at
low velocities [Niemeijer and Spiers, 2005], this first
modeling attempt yields encouraging results with respect
to the velocity-weakening trend observed in experiments on
analogue gouges at high sliding velocities. When combined
with our model for the velocity-strengthening behavior seen
in our low-velocity experiments [Niemeijer and Spiers,
2005], we obtain a composite model that reproduces all of
the elements of steady state mechanical behavior seen in our
complete spectrum of tests on halite-muscovite mixtures
(see Figure 9). Including nonsteady state effects, such as the
influence of cataclastic grain size reduction and foliation
development or destruction, forms the subject of ongoing
work.

5. Model Predictions for Natural Conditions and
Implications for Seismogenesis

5.1. Application to Nature

[36] We now apply both our low-velocity model
[Niemeijer and Spiers, 2005] and the high-velocity model
reported in this paper to the case of a quartz-muscovite fault
gouge deforming at midcrustal conditions (i.e., at an effec-
tive normal stress of 100 MPa, temperatures of 100, 200,
300, and 400�C and a grain size of 50 mm) roughly
consistent with a depth of �8–10 km. Note that we have
used the friction coefficient obtained from our pure musco-
vite test at room temperature (m = 0.31). The temperature
dependence of the (high strain) friction coefficient of mus-
covite under hydrous conditions is poorly known, though
recent work by Mariani et al. [2006] suggests little temper-
ature effect. Previous work on pressure solution compaction
in quartz sands [Niemeijer et al., 2002] has shown that
pressure solution is probably dissolution rate controlled
under upper to midcrustal conditions, so we have used the
dissolution rate law reported by Rimstidt and Barnes [1980]
to describe the rate limiting step of pressure solution. The
geometrical parameters in our high-velocity model were
taken in the middle range already mentioned in the applica-
tion of our model to the experimental results (see also
Table 1). All parameters in the low-velocity model are the
same as previously reported [Niemeijer and Spiers, 2005].
[37] Our results are shown in Figure 10 as a plot of

friction coefficient versus strain rate. This shows that the
predicted friction coefficient of a quartz-muscovite fault
gouge at a very low strain rate is lower than the friction
coefficient assumed for pure muscovite gouge. This reflects
a property of our low-velocity slip model, in which
frictional slip occurs only on horizontal portions of the
phyllosilicate foliation [see Bos and Spiers, 2002; Niemeijer
and Spiers, 2005]. With increasing bulk shear strain rate, the
friction coefficient of our simulated quartz-muscovite fault
gouge increases (velocity-strengthening, compare regime
2 described by the model of Niemeijer and Spiers
[2005]). At a constant strain rate in this regime, the friction
coefficient decreases with increasing temperature. At strain

Figure 8. Shear stress versus sliding velocity graph,
showing the experimental data for a sample containing
20 wt % muscovite and the predicted model curves.
(a) Model predictions using variable grain sizes. (b) Model
predictions using variable grain boundary friction coeffi-
cients. (c) Model predictions using variable values for the
geometrical constant H. (d) Model predictions using
variable values for grain boundary cohesion S0.
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rates of �10�7, 10�5, and 10�4 s�1 for temperatures of 200,
300, and 400�C, respectively, a transition to velocity
weakening occurs, as described by the model developed
in the present paper. This velocity weakening continues for
over 4 orders of magnitude in strain rate. This effect is at
least an order of magnitude larger than reported in experi-
ments in experiments on pure quartz gouges or bare rock
surfaces of granite [e.g., Blanpied et al., 1991, 1998;
Chester, 1994; Kilgore et al., 1993]. Eventually, the model
predicts a velocity-independent strength equal to the fric-
tional strength of pure muscovite gouges. Clearly, high
shear strain experiments are needed on quartz-muscovite
gouges, at high pressures and temperatures, to test the
models illustrated in Figure 10. Nonetheless, the predicted
velocity effects are large compared to laboratory measure-
ments for pure quartz gouge and bare surfaces, so that
further attention is justified.

5.2. Implications for Seismogenesis

[38] Finally, let us consider a crustal fault zone consisting
of quartz-mica gouge sliding at an aseismic creep rate and
deforming in the velocity-strengthening field corresponding
to the microphysical model put forward by Niemeijer and
Spiers [2005]. This model can be used to predict the steady
state shear stress for low-velocity slip on such a fault zone
as shown in Figure 10. Now, let us assume that some part of
the fault zone is locally locked, perhaps due to the absence
of mica or due to a geometric irregularity, such that aseismic
creep is resisted in that segment of the fault. The local shear
stress then builds up, until failure occurs. In the case that
this leads to rapid rupture of the aseismically creeping
section, the aseismically deforming gouge will be forced
into the high sliding velocity regime (Figure 10). Assuming
that the gouge now deforms via a granular flow mechanism
with competition between dilatation and compaction, we
can use our model for the associated velocity weakening to
estimate the shear stress for coseismic slip at typical
coseismic rates. If we assume that the size of the asperity
is small with respect to the rupture length (area) of the
aseismically creeping section, then the static stress drop of
the seismic event will be the difference between the stress

state of the aseismically creeping section before and during
the rupture. Now, the seismic stress drop for a seismic event
can be estimated from GPS measurements and/or seismo-
logical observations of fault slip and length [Hanks, 1977;
Scholz, 2002]. We can compare these estimates with the
predictions from our two microphysical models, noting that
the geophysical estimates actually give an average value for
the rupture zone, instead of the value of stress drop at a
point [Scholz, 2002].
[39] In Figure 11, we show the model results for the

above scenario, for the cases of strike slip (Figure 11a) and
normal faulting (Figure 11b). In our calculation, we
have assumed an aseismic creep rate of 10�3 mm s�1 (or
30 mm yr�1) and a coseismic slip rate of 1 m s�1, based on
GPS measurements across the San Andreas Fault and
previous estimates of coseismic slip rates [e.g., Becker et
al., 2004; Scholz, 2002]. We have again used the dissolution
rate law reported by Rimstidt and Barnes [1980] to describe
the rate limiting step of pressure solution [Niemeijer et al.,
2002]. As phyllosilicates have been reported both to
increase [Bjørkum, 1996; Dewers and Ortoleva, 1991;
Renard et al., 2001] and decrease IPS compaction rates
[Niemeijer and Spiers, 2002], we also show model curves
for increased (10 times) and decreased (10 times) dissolu-
tion rates (see Figure 11). The grain size used in all model
curves is 50 mm, which is a reasonable estimate for a
natural, middle-upper crustal fault rock [Imber et al.,
2001; Wibberley and Shimamoto, 2003]. We also show
static stress drop estimates for earthquakes obtained from
the analysis of strong ground motion data, geodetic data,
and aftershock area and from the corner frequency of the
corresponding high-resolution (source spectrum) seismic
data [Bouchon et al., 1998; Hough, 1997; Ide et al., 1996;
Kanamori, 1994; McGarr and Fletcher, 2002].
[40] With reference to Figure 11 the microphysical

models predict a drop in stress to depths up to 4 km for a
thick fault zone (10 m) and to depths up to 14 km for a thin
fault zone (1 mm). The transition from a predicted stress
drop to a (physically unfeasible) stress rise occurs at depths
ranging from 2 to 4 km for the thick fault zone models, and
at depths ranging from 6 to 14 km for the thin fault zone
models. The predicted maximum stress drops (1 to 4 MPa
for the thick fault zone and 4 to 12 for the thin fault zone)

Figure 9. Shear stress versus sliding velocity graph
showing the experimental data for a sample containing
20 wt % muscovite and the results for our composite model
consisting of the low-velocity model involving frictional
viscous flow [Niemeijer and Spiers, 2005] and the high-
velocity model presented in this paper.

Figure 10. Model predictions of friction coefficients for a
wide range of strain rate using a grain size of 30 mm, an
effective normal stress of 100 MPa and temperatures of 100,
200, 300, and 400�C.
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agree relatively well with static stress drop estimates from
earthquakes covering a large magnitude range [Abercrombie
and Rice, 2005; Duni and Kuka, 2005; Kanamori, 1994;
Konstantinou et al., 2005; Kumar et al., 2005; McGarr and
Fletcher, 2002; Scholz, 2002].
[41] Our calculations show that the kinetics of the disso-

lution reaction have a strong effect on absolute maximum
value of the stress drop. One order of magnitude change in
dissolution rate was found to change the maximum stress
drop by as much as 3 MPa. Also, the depth to which seismic
slip may propagate (i.e., the switch from velocity weakening
to velocity strengthening) is very much dependent on the
width of the deforming zone and on the kinetics of disso-
lution of quartz. For thick fault zones, the model predicts
that seismic slip will not propagate to depths over 4 km,
whereas the depth to which seismic slip may propagate
under fast kinetic conditions in a thin fault zone may reach
14 km. Comparing the two tectonic regimes (strike slip
versus normal faulting), the predicted maximum static stress
drop is expected to be the largest in a strike-slip fault
regime. As far as we are aware, no statistical evidence of

static stress drops exist to date that confirms or rejects such
a difference between tectonic settings.

5.3. Further Implications

[42] The present results of our microphysical model
imply that if similar micromechanical processes operate in
natural, quartz-rich fault gouges, the presence of phyllosi-
licates and the operation of pressure solution may enhance
velocity weakening by up to 1 order of magnitude. Extrap-
olation of our models to natural conditions, to generate
maximum static stress drop estimates as a function of depth,
yields results which are reasonably consistent with estimates
of static stress drop from seismic data (Figure 11). More-
over, the results imply that we can reliably extrapolate RSF
parameters for quartz-phyllosilicate fault gouges to natural
conditions, only if we can characterize the fault zone in
terms of the composition of the fault rock and local pressure
solution kinetics. Extending our model to address transient
effects in the velocity-weakening regime, involving compe-
tition between compaction and dilatation, will allow us to
predict the values of a, b and Dc parameters, used in RSF

Figure 11. Stress drop versus depth plots for two different tectonic settings using the microphysical
models for low-velocity frictional viscous flow behavior and high-velocity granular flow-type behavior.
We assumed a coseismic slip rate of 1 m s�1, an overburden density of 2750 kg m�3, and a hydrostatic
fluid pressure (l = 0.36). Three different dissolution rates were used, which are Rimstidt and Barnes’
[1980] dissolution rate equation (black lines), 10 times this dissolution rate (dark gray lines), and 0.1 times
(light gray line). We determined stress drops for a fault zone thickness of 1 mm and 10 m. Also shown are
static stress drop estimates for various earthquakes. (a) Strike-slip fault setting. Geothermal gradient is
25�C km�1. (b) Normal fault setting. Geothermal gradient is 35�C km�1.
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descriptions, on the basis of the microscale processes that
occur. It is expected that the critical displacement, Dc, for a
fault gouge will depend on the amount of time necessary to
reestablish steady state porosity and thus on the rate of
pressure solution compaction and the rate of dilatation (i.e.,
on tan y).

6. Conclusions

[43] In order to understand the seismic cycle and seismo-
genesis better, an improved knowledge of the phenomenon
of velocity-weakening slip is required. Previous work using
high-strain rotary shear experiments has demonstrated un-
usually strong velocity weakening at high sliding velocity,
as the result of addition of weak phyllosilicates to simulated
(halite) fault rock under conditions where solution transfer
processes, cataclasis and foliation development/destruction
occur. The inferred deformation mechanism was granular
flow with ongoing competition between shear-induced
dilatation and compaction by solution transfer processes
On the basis of a simple microphysical model for this high-
velocity, velocity-weakening behavior, we conclude the
following:
[44] 1. A microphysical model based on competition

between shear-induced dilatation and compaction by time-
dependent pressure solution reproduces the velocity-
weakening effect seen in high-strain rotary shear experiments
on brine-flooded fault rock analogue (halite-muscovite)
samples. The predicted velocity-weakening effect is at least
1 order of magnitude greater than typically seen in experi-
ments on quartz gouges or bare rock interface of granite
under all conditions.
[45] 2. Extrapolation of the model to upper and mid

crustal conditions suggests that strong velocity weakening,
due to granular flow with competition between dilatation
and compaction, is possible in quartz-phyllosilicate fault
gouges.
[46] 3. Application of the velocity-weakening model to

crustal faults, along with an earlier velocity-strengthening
model for slow deformation, predicts static stress drops for
seismic events, which are in reasonable agreement with
estimates from seismological observations.
[47] 4. High-strain experiments on simulated fault gouges

consisting of quartz-phyllosilicate mixtures, performed
under hydrothermal conditions, are needed to test the model.
[48] If similar processes are verified inquartz-phyllosilicate

mixtures, the present model should be extended to include
transient sliding behavior. The resulting model will be
capable of predicting values for RSF parameters for natural
fault rocks and will thus yield a microphysically based RSF
model for quartz-phyllosilicate fault gouges.

[49] Acknowledgments. The authors would like to thank the
Associate Editor Ernie Rutter, Andreas Kronenberg and an anonymous
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