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a b s t r a c t

The deformation of rocks is a disequilibrium and strongly non-linear phenomenon with a number of
interacting chemical, thermal and microstructural processes operating simultaneously. We review
progress in this area over the past 30 years. Deforming-chemically reacting systems are dissipative
systems and hence are characterised by highly ordered structures that develop through cooperative
processes once parameters such as critical strains, strain-rates, fluid infiltration rates, damage densities
or temperatures are attained. Such criticality is the hallmark of deformed rocks at all length scales and is
the basis for a diverse range of structures such as foliations and lineations produced by metamorphic
differentiation, rotation recrystallisation, folding, boudinage and micro to regional scale fracture systems.
Criticality is identified with classical criticality and not self-organised criticality. The first and second laws
of thermodynamics are used to show that such structural diversity arises from reaction-diffusion-
deformation equations. Criticality of the system is associated with the stored energy becoming non-
convex and structures arise in order to minimise this non-convex energy. These structures are scale
invariant and hence are characterised by fractal and minimal surface geometries. Thermodynamics is
a powerful discipline to integrate seemingly unrelated processes in structural geology and produce an
integrated approach to the subject that crosses all length scales.

� 2011 Elsevier Ltd. All rights reserved.
Prologue

The last review of the application of thermodynamics to the
deformation of rocks was the paper: Non-hydrostatic Thermody-
namics and Its Geologic Applications by Paterson (1973) who
emphasised that hewas only considering systems at equilibrium. In
order to appreciate developments since then one should under-
stand the historical context in which that paper was written. The
extension of thermodynamics to systems not at equilibrium had
been considered by many before Paterson’s paper and had been
).
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developed particularly by De Groot (1952) and Prigogine (1955)
with specific application to chemical systems, including diffusion,
and based largely on earlier work by Onsager (1931a,b). There was
very little attention paid to deforming systems in that body of work
although De Groot andMazur (1962) had introduced the concept of
internal variables to define the state of a deforming system. Land-
mark papers were published by Biot (1955,1958), Coleman and Noll
(1963), Coleman and Gurtin (1967) and Rice (1971, 1975). These
papers were seminal in that they expressed the second law of
thermodynamics in terms of entropy production rate and in a way
that the evolution of a general system, not at equilibrium, could be
tracked with time; they introduced and clarified the concept and
use of internal variables rather than the classical state variables of
equilibrium thermodynamics. Importantly, these papers addressed
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the mechanics of deforming systems as well as chemical aspects.
The publication of many of these papers and the works by Truesdell
and Noll (1965) and Truesdell (1966, 1969) was met with some
controversy largely because Truesdell in particular (and in a not
very subtle manner) pointed to serious flaws in the works of De
Groot and Prigogine. The situation was not helped by the emphasis
of the Truesdell School on mathematical formalism and rigour. By
the time Paterson’s paper appeared a large amount of confusion
existed in the non-equilibrium literature (and even in the equilib-
rium areas that Paterson chose to address) and to a large extent this
confusion continues in the literature. The essential areas of
contention were: (i) The “Curie Principle or Theorem” that claimed
quantities of different tensorial character cannot interact. The claim
involved restrictions placed on the entropy production rate for
coupled processes arising from the “theorem”. (ii) The claim that
processes “close” to equilibrium are linear whereas those “far” from
equilibrium are non-linear. (iii) The claim that systems evolve so
that the entropy production rate is a minimum. It turns out in
hindsight (and we address these issues in this paper) that all three
claims are without merit but in 1973 (and even today in some
minds) the controversy was rife. Paterson chose not to address
these issues. Since then the work of many, including in particular
Ziegler (1963, 1983), Lavenda (1978), Coussy (1995, 2004, 2010),
Houlsby and Puzrin (2006a) and Ross (2008), has clarified points of
contention to the extent that the application of thermodynamics to
deforming systems is now routine in many disciplines and some
progress can be made in applying the concepts of thermodynamics
to deforming-chemically reacting geological systems. That is the
subject of this paper.

1. Introduction

Over the past 30 years there have been dramatic developments
in structural geology, metamorphic petrology, physical metallurgy,
continuum mechanics, physical chemistry and thermodynamics
that are relevant to processes that operate within the Earth but
these developments have evolved largely independently of each
other and many have not yet been incorporated into main-stream
structural geology. On the other hand many contributions made
within structural geology over the past 30 years take on new
significance when viewed in the context of new knowledge. This
paper attempts to integrate some of these developments into
a common framework that couples together the various processes
of interest to structural and metamorphic geologists. The emphasis
is on reviewing work done over the past 30 years rather than
introducing a number of new results. Our aim is to assemble and
integrate the existing work into the framework which has come to
be known as Generalised Thermodynamics. This framework is
convenient for formulating relationships between coupled
processes in a manner that is not ad hoc, in that it ensures
compatibility with the laws of thermodynamics, and is applicable
to systems at equilibrium as well as far from equilibrium. Moreover
the framework is a means of integrating and synthesising appar-
ently diverse subjects and approaches. Clearly, because of the
immense volume of material available we have had to be highly
selective and have chosen references that illustrate specific points
rather than attempt to be inclusive. The paper is therefore more
a review of the subject than of the associated literature. We make
an effort where possible to highlight the main review articles and
important books in various associated fields.

This review is concerned with processes that operate within
the crust of the Earth, theways inwhich they dissipate energy and
the ways in which these processes are coupled in the upper parts
of the Earth to produce the structures we see in deformed meta-
morphic rocks. These processes involve permanent deformation
in environments that cover temperatures ranging from atmo-
spheric temperature to the solidus of many rocks, pressures
ranging from atmospheric to about two GPa, mass transport both
in the solid state and in fluids such as aqueous fluids and melts,
thermal transport, both by advection and conduction, and chem-
ical reactions. A thermodynamic approach emphasises that such
processes do not operate independently of each other but are
strongly coupled through the second law of thermodynamics.
Each process dissipates energy, that is, it produces entropy, and so
the coupling is dictated by the ways in which the entropy
production rate is partitioned between the processes. By entropy
production rate we mean the amount of heat produced at each
point in the system per unit time divided by the current temper-
ature at that point (Truesdell, 1966). If _s is the specific entropy
production rate at a particular point then the specific total dissi-
pation function is defined at that point as F ¼ T _s where T is the
absolute temperature; the dissipation function, F, is a scalar and
has the units Joules per kilogram per second; the overdot repre-
sents differentiation with respect to time. The total dissipation
rate at each point, F, is the sum of the individual dissipation rates
arising from each dissipative process operating at that point. The
dissipation rates that concern us are those arising from plastic
deformation,Fplastic, mass transfer (by diffusion or by advection in
a moving fluid), Fmass transfer, chemical reactions, Fchemical, and
thermal transport, Fthermal transport, and so

F¼T _s¼FplasticþFmasstransferþFchemicalþFthermaltransport�0 (1)

where the inequality is a direct expression of the second law of
thermodynamics for a system not at equilibrium; the equality holds
for equilibrium. Eq. (1) is the fundamental equation that enables
various processes to be coupled in a thermodynamically admissible
manner (such that the laws of thermodynamics are obeyed); when
the individual dissipation functions are expressed in an explicit
manner Eq. (1) is often called the ClausiuseDuhem inequality
(Truesdell and Noll, 1965). If necessary additional dissipation func-
tions could be added to Eq. (1) to represent other dissipative
processes such as fracturing, grain-size reduction ormicrostructural
evolution. Eq. (1) is true independently of thematerial properties of
the material; it is true for homogeneous and inhomogeneous
materials and for isotropic and anisotropic materials. Complicated
interactions can be incorporated into Eq. (1) by introducing rela-
tions (determined by experiments) between various dissipation
functions. Thus chemical softening arising from the formation of
weak mineral phases during a metamorphic reaction can be incor-
porated by writing relations between Fplastic and Fchemical.

It turns out that the manner inwhich the partitioning expressed
by Eq. (1) is achieved across the various processes is dependent on
the length scale involved; this not only introduces some simplifying
aspects but is also the basis of a general principle of scale invariance
that emerges from such work: different processes dominate in
producing entropy at different scales but similar structures develop at
each scale. By similar here we mean that structures of identical
geometrical appearance are developed at a range of scales. The
overall outcome is that different processes have strong feedback
influences on others at different scales leading to the scale invari-
ance of structures and to the mineral assemblages that we observe
in the crust of the Earth. The general system we consider in this
paper is a deforming, chemically reactive system in which micro-
structural/mineralogical evolution and mass and thermal transport
play significant roles. Some examples of the feedback relations that
can exist in such systems are illustrated in Fig. 1.

While the various processes mentioned above are operating, the
system dissipates energy and hence is not at equilibrium. Thus, the
overarching concepts that unify these various processes are



Fig. 1. Some possible feedback relations in a closed, deforming system with chemical
reactions, fluid flow and thermal transport.
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grounded in the thermodynamics of systems not at equilibrium.
The traditional approach within geology as far as thermodynamics
is concerned is strongly influenced by the work of Gibbs (1906)
where, for the most part, equilibrium is assumed. The outcome is
that non-equilibrium approaches have been largely neglected or
even dismissed as irrelevant in the Earth Sciences, the argument
being two-fold: (i) geological processes are so slow that equilibrium
can be assumed and (ii) within a small enough region we can
assume that equilibrium is attained (Thompson, 1959; Korzhinskii,
1959). Although both these points may be excellent approxima-
tions in some cases (see the treatment of Rice, 1975), the important
point is that all of the processes mentioned above dissipate energy
while they operate no matter how slow the process, or how small
the system, and the resulting dissipation must be expressed in
some manner. The subject that is now called Generalised Thermo-
dynamics (Houlsby and Puzrin, 2006a) is concerned with the ways
in which dissipated energy (entropy) is partitioned across the
various processes operating in a deforming, chemically reacting
system. However the system does not need to be far from equi-
librium to be treated by Generalised Thermodynamics. In an adia-
batic, homogeneously deforming elastic solid the deformation is
reversible (McLellan,1980); the entropy production rate is zero (the
processes are isentropic) and the system is an equilibrium system.
This is still part of Generalised Thermodynamics. In this particular
case the stresses are non-hydrostatic but the system remains at
equilibrium; non-hydrostatic thermodynamics is not synonymous
with non-equilibrium thermodynamics. Discussions of equilibrium
non-hydrostatic thermodynamics are given by Nye (1957), Paterson
(1973) and McLellan (1980); we do not consider the subject further
in this paper.

A deterrent to progress in applying non-equilibrium thermo-
dynamics to deforming rocks is that developments in the subject
have been dispersed across a large number of disciplines and
languages, with conflicting or paradoxical propositions put
forward, so that it has been difficult to produce a unified approach
to the subject as far as geoscientists are concerned. An important
example is the proposition that the entropy production rate (or the
dissipation rate) is a minimum in non-equilibrium systems (Ons-
ager, 1931a, b; Prigogine, 1955; Biot, 1955, 1958; Kondepudi and
Prigogine, 1998). In an apparent paradox, others, in particular Zie-
gler (1963, 1983), have proposed exactly the opposite: that the
entropy production rate is a maximum. We explore these and
related concepts in Section 3.2. The outcome is that almost all of
these apparently conflicting views turn out to be an expression of
Ziegler’s principle (Table 5). However, neither proposition is
generally true (Ross, 2008) and only in special, but important, cases
do such extremum principles exist. The thermodynamics of
systems not at equilibrium is advancing at a rapid rate and much
still needs to be established even at a very basic level.

In this review we first develop a ground-work in Generalised
Thermodynamics and then move to apply these principles to rocks
where deformation, thermal and fluid transport, chemical reac-
tions, damage and microstructural evolution contribute to the
evolution of the structure of rock masses. Our approach is to divide
the subject into issues to do with length scales even though many
basic results and principles hold at all scales. Thus we consider first
the microscale ranging from microns to about a metre, then the
intermediate scale ranging from about a metre to 100s of metres
and then the regional scale measured in kilometres. We do this
because as a general rule particular feedback mechanisms between
coupled processes dominate at these characteristic length scales.
Some, such as mineral reactions, have no characteristic length
scale; we treat them initially as microscale phenomena but include
them ultimately at all scales. Similarly, although damage is
important at all scales, we elect to discuss this topic at the regional
scale. Damage is a general term to describe any process that results
in degradation of the strength of a material and includes fracturing,
“void” or inclusion formation, grain-size reduction and chemical
mechanisms of strength degradation such as stress corrosion. Most
of the published results relevant to this paper are applicable at the
microscale and so this review is clearly biased towards that scale.
This is not to say that the intermediate and regional scales are not
amenable to major advances in the future particularly with respect
to understanding criticality (Sornette, 2000) at the large scale and
its control on tectonic evolution.

It becomes clear that the principle of minimising the Helmholtz
energy is an important principle at all scales. This principle is useful
for both equilibrium and non-equilibrium systems and governs the
formation of sub-domains within the system characterised by
differing chemical compositions and/or fabric. Such sub-domains
play the roles of energy minimisers and can take on fractal geom-
etries in order to achieve overall compatibility with an imposed
deformation. We treat this principle at the microscale but empha-
sise that it is fundamental at all scales.
2. Preliminaries

2.1. Notation

Symbols are defined in Table 1 and when first introduced in the
text. Cartesian coordinates are used throughout. We use the
convention that scalar quantities are represented in non-bold font:
a, T, J; vectors, tensors and matrices are represented by bold font:
J, A, s. Vector, tensor and matrix Cartesian components are repre-
sented using indices ranging from 1 to 3: Ji for vectors and sij for
second order tensors. The Einstein summation convention (Nye,
1957, p. 7) is used so that repeated indices mean summation on that
index unless otherwise stated. The various tensor operations are as
follows: (i) a$b is the scalar product of two vectors a and b; (ii) a� b
is the vector product of two vectors a and b; (iii) a:b is the scalar
product of two second order tensors aij and bij and is equivalent to
aijbij; (iv) a 5 b is the tensor product of two vectors a and b so that

a5b ¼
2
4 a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

3
5 (2)

The tensor product of two vectors is also known as the dyadic
product; the result of the 5 operation involving two vectors is



Table 1
Symbols used in the text with units.

Quantity Description Units, Typical Values

A Material constant Pa s
A Affinity; “driving force” J kg�1

Ar Arrhenius Number dimensionless
A, B, C, D, X, Y Symbols representing chemical components dimensionless
A ,B, C, D, X, Y Concentrations of chemical components Depends on context
a, b, c, d Constants Depends on context
B Constant Pa s
Bij Generalised stress driving crystallographic preferred orientation development Pa
a Rate of generation of dislocations s�1

b Burgers vector m
csolidi ; cfluidi Concentrations of component i in the solid and fluid respectively Dimensionless (volume or mass%)
cp Specific heat at constant pressure J kg�1 K�1

C Total chemical dissipation arising from all of the chemical reactions J kg�1 s�1

d Grain-size m
D Stretching tensor; deformation-rate tensor s�1

DK Diffusion coefficient for the Kth chemical component m2 s�1

Dk Diffusion coefficient for the kth population dislocation density m2 s�1

f Function
F Function
F Deformation gradient dimensionless
F, G Functions that express the rates of production of chemical components
FD, GD Functions that express the rates of production of chemical

components in a deforming environment
E, H Non-linear functions of composition representing heterogeneous reaction sites
Gr Gruntfest Number dimensionless
G Specific Gibbs energy J kg�1

H Specific enthalpy J kg�1

H Mean curvature m�1

h Thickness of shear zone m
I Identity matrix dimensionless
J2 Second invariant of the stretching tensor s�2

JK Flux of the Kth chemical component m s�1

j Darcy or infiltration flux m s�1

K Gaussian curvature m�2

Kfluid Fluid permeability m2

Kthermal Thermal conductivity W m�1 K�1

k Boltzmann’s constant J K�1

kTuring Wave-number associated with a Turing instability m�1

L Velocity gradient s�1

L Size of system m
_L
M

Rate of latent heat production from Mth reaction J kg�1 s�1

lprocess Length scale for a process over which feedback is important m
lm, llm Mean free path of mobile and less mobile dislocations m
mK Concentration of Kth reactant or product kg m�3

m� Slip plane normals in a subgrain dimensionless
N Stress exponent in constitutive law dimensionless
P, Pfluid Pressure, fluid pressure Pa
Pc Critical buckling load kg
Q Finite rotation matrix dimensionless
Q Activation enthalpy J kg�1

R Gas constant J kg�1

R� Rotations in a subgrain dimensionless
r Radius m
rþ; r� Forward and reverse reaction rates for a chemical reaction s�1

s; s� Slip direction vector; slip direction vectors in a subgrain dimensionless
Sijkl Elastic compliance Pa�1

s Specific entropy J kg�1 K�1

T Normal to slip plane - vector dimensionless
T Absolute temperature K
t Time s
U Finite stretch tensor dimensionless
U Specific internal energy J kg�1

u,v Concentration of chemical component Depends on context
Vo, VA

o Specific volume of the material, specific volume of A m3 kg�1

v; v Boundary velocity; Velocities of material points m s�1

x, X Coordinates of a material point in the deformed, undeformed state m
xi, Xi Cartesian coordinates of a material point in the deformed, undeformed state m
Yij Generalised damage stress Pa

aQij Internal variable for process Q Depends on nature of Q
a, b Constants Depends on context
bij Tensor measure of crystallographic preferred orientation dimensionless
g Ratio of diffusivities dimensionless
g; g� Shear strain; shear strains in a grain dimensionless

(continued on next page)
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Table 1 (continued )

Quantity Description Units, Typical Values

3ij; 3
elastic
ij ; 3plasticij Small strain tensor, elastic strain, plastic strain dimensionless

_3ij; _3dissipativeij Strain-rate, strain-rate arising from dissipative processes s�1

dij Kronecker delta dimensionless
dij Tensor measure of damage dimensionless
h, hA Viscosity, viscosity of A Pa s
x Extent of a mineral reaction 0 � x � 1;dimensionless
_x; _x

M
Rate of a mineral reaction, rate of the Mth mineral reaction s�1

xi Perturbations m
kthermal Thermal diffusivity m2 s�1

kprocess Diffusivity for a process m2 s�1

lTuring Wavelength of the patterning associated with a Turing instability m
mK Chemical potential of the Kth chemical component J kg�1

U Spin tensor dimensionless
nm, nlm Velocity of mobile, less mobile dislocations m s�1

u Amplification factor dimensionless
6 Rate of interaction of dislocations m4 s�1

r, ro Density, initial density kg m�3

rlm, rm Instantaneous densities of less mobile, mobile dislocations m m�3

ro Initial density of dislocations m m�3

sij Cauchy stress Pa
s Characteristic time scale s
s Shear stress Pa
4 Porosity dimensionless
4A Volume fraction of A dimensionless
F Dissipation function J kg�1 s�1

Fmechanical Contribution to the total dissipation from purely mechanical processes J kg�1 s�1

Fdiffusive Contribution to the total dissipation from diffusive processes J kg�1 s�1

Fchemical Contribution to the total dissipation from chemical reactions J kg�1 s�1

Fthermal Contribution to the total dissipation from thermal diffusion J kg�1 s�1

c Taylor-Quinney coefficient Assumed to be unity; dimensionless
cA, cB Fractions of mechanical dissipation partitioned between reactions that produce A and B dimensionless
cij ; c

d
ij Generalised stress associated with plastic strain, generalised stress associated with damage Pa

J Specific Helmholtz energy J kg�1

z Variation of fluid content dimensionless
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a rank-1matrix that transformsas a secondorder tensor. Thisproduct
is important in discussions of crystal plasticity and particularly in
establishing compatibility of deformations between two adjacent
domains deformed by single or multiple crystal slip (Section 4.11).
2.2. The “Curie principle”

The dissipation function,F, in Eq. (1) is a scalar quantity given by
F ¼ T _s but comprises the sum of other quantities that involve
tensor quantities of higher order. Thus Fplastic ¼ sij _3

plastic
ij and so

involves the second order tensors, the Cauchy stress, sij, and the
plastic strain-rate, _3plasticij . Misconceptions concerning the veracity of
coupling various processes through the use of Eq. (1) arise from the
work of De Groot (1952) and Prigogine (1955) who proposed
a “principle” which they labelled “The Curie principle or theorem”

that says “Quantities of different tensorial character cannot interact
with each other”. Truesdell (1966, 1969) points out that there is
nothing in the original works of Curie (1894, 1908) that resembles
sucha statement. Sinceageneral tensorhasno symmetryascribed to
it (other than the trivial property of symmetry or lack thereof about
the leading diagonal) the De Groot “Curie principle or theorem” has
nothing to do with symmetry. The so called “Curie principle” is
nothingmore nor less than a statement of themost elementary rule
of (Cartesian) tensor algebra which says that: tensors of the same
order may be added to produce a tensor of the same order (Eringen,
1962, p. 435). Otherwise an expressionwhich adds Cartesian tensors
of different orders makes no sense mathematically, physically or
chemically. In Eq. (1) all of the terms such as Fplastic ¼ sij _3

plastic
ij are

scalarswith units J kg�1 s�1 as is the total dissipation. Unfortunately,
the De Groot statement is commonly taken to mean: processes
involving quantities of different tensorial order cannot be coupled. This
is clearlywrong. Nye (1957, Chapter 10) givesmanywell established
examples of the equilibrium properties of crystals where properties
of different tensorial order are coupled or interact. Part of the
misconception here seems to arise from the fact that many authors
did not understand that quantities such as sij _3

plastic
ij are scalars. After

all, the quantity sij _3
plastic
ij is, by definition, the scalar product of two

second order tensors. All of the couplings described by Eq. (1) are
scalars (see the set of Eqs. 23). The De Groot “Curie theorem” has
been called the “non-existent theorem in algebra” by Truesdell
(1966) since it is merely an expression of an elementary rule in
tensor algebra and it certainly has no association with the Curie
Principle as enunciated by Curie (1894, 1908).
2.3. Deformation, deformation-rate and constitutive relations

To be specific about the fundamental principles of Continuum
Mechanics involved in this review and that underlie the thermo-
dynamic formalism we include the following discussion. Different
materials,when subjected to the same set of imposedmovements or
forces on their boundaries, behave in differentmanners anddevelop
different internal stress states. In general, the stress state is a func-
tionof thekinematichistoryof thematerial and theway inwhich the
stress state for a givenmaterial is related to the imposed kinematics
is known as the constitutive relation for that material. We are inter-
ested only in the deformation of solids here (although the solidmay
contain some fluid), a solid being a material with at least one
preferred stress free (or undeformed) state (Rajagopal and Srinivasa,
2004). Gases and liquids have no such state. A solid is elastic (or
strictly, hyper-elastic, Fung, 1965) if the response to an imposed
deformation is rate-independent, recoverable and the stress in the
material can be derived from the Helmholtz energy,J (Houlsby and
Puzrin, 2006a). A solid is plastic if the response is rate-independent,
non-recoverable and the stress in thematerial is governed bya yield



B.E. Hobbs et al. / Journal of Structural Geology 33 (2011) 758e818 763
surface. Again, for hyper-plastic materials (the only materials we
considerhere) the stress canbederived fromJ (Rice,1975).A solid is
viscous if the response is rate-dependent and non-recoverable.
Again the stress can be derived fromJ (Houlsby and Puzrin, 2006a).
Most solids of interest in structural geology are elasticeplas-
ticeviscous so that the shape and size of the yield surface is rate-
dependent but the stressmayalways be derived fromJ (Rice,1975).

A deformation is defined by the set of equations

x ¼ f ðXÞ (3)

wherex andXare thecoordinatesof amaterial point in thedeformed
and undeformed states (Fig. 2) and f in general is a non-linear func-
tion. In general the deformation Eq. (3) consists, at each point, of
a distortion, a rigid body rotation and a rigid body translation.

The deformation gradient is defined as

F ¼

2
66666664

vx1
vX1

vx1
vX2

vx1
vX3

vx2
vX1

vx2
vX2

vx2
vX3

vx3
vX1

vx3
vX2

vx3
vX3

3
77777775

(4)

In Eqs. (3) and (4), x1, x2, x3 are the Cartesian coordinates of
a material point in the deformed state and X1, X2, X3 are the coor-
dinates of this samepoint in the undeformed state as shown in Fig. 2.
Notice that fora generaldeformation thedeformationgradient isnot
symmetric, so that vxi

vXj
svxj

vXi
and F has 9 independent components

instead of the six independent components of the strain tensor. The
volume change associated with the deformation is measured by
J, the value of the determinant of F; the deformation defined by Eq.
(3) is constant-volume for J¼ 1. The significance of the deformation
gradient is that it completely defines the deformation, including the
stretch and rotation, of all line, surface and volume elements at each
point within the body that it applies to (Bhattacharya, 2003)
whereas various measures of the strain give a subset of this infor-
mation. Specifically the deformation at a point x in the deformed
body in terms of the deformation gradient is given by

x ¼ FX þ c (5)

which says that each vector X in the undeformed state is distorted
and rotated by the deformation gradient F and translated via a rigid
motion by the vector c to become the vector x. Both Eqs. (3) and (5)
are referred to as a deformation. The finite stretch tensor, U, and the
finite rotation matrix, Q, are given by (Bhattacharya, 2003):
Fig. 2. The deformation expressed by Eqs. (3) and (5). The vector c is the rigid body
translation in Eq. (5). (X1, X2) and (x1, x2) are the coordinates in the undeformed and
deformed states respectively.
U ¼
ffiffiffiffiffiffiffiffiffi
FTF

p
and Q ¼ FU�1 (6)
where the superscripts T,�1 stand for the transpose and the inverse
of the relevant matrix. U has the same eigenvectors as FTF but the
eigenvalues of U are the square roots of those of FTF.

The above discussion concerns the geometry of the deformation
and in particular the results of a deformation, namely, distortion as
measured by the stretch, U, and rotation as measured by Q. In
general the constitutive relation for a given material is a function of
the kinematics of the deformation and not of the resulting geom-
etry (and hence not of the strain). The kinematics (or movement
picture of Sander, 1911) is measured by the spatial distribution of
the velocities, v, of material points and is expressed as the velocity
gradient, L:

L ¼

2
66666664

vv1
vX1

vv1
vX2

vv1
vX3

vv2
vX1

vv2
vX2

vv2
vX3

vv3
vX1

vv3
vX2

vv3
vX3

3
77777775

(7)

In Eq. (7) the velocity gradient is expressed in terms of the
undeformed coordinates; this is referred to as a Lagrangian
formulation. If the Xi in Eq. (7) is replaced by the coordinates in the
deformed state, xi, then the formulation is Eulerian. The stretching
tensor, D, is given by D ¼ 1

2ðLþ LT Þ and the spin tensor, U, is given
byU ¼ 1

2ðL� LT Þ. D is also known as the deformation-rate tensor. It
is a symmetrical second order tensor and so can be represented as
an ellipsoid with principal axes equal to the principal deformation-
rates. The stretching tensor and the Lagrangian strain-rate tensors
are approximately equal for infinitesimal deformations. The
Eulerian strain-rate tensor is approximately equal to the stretching
tensor only for infinitesimal deformations with small spins (Erin-
gen, 1962, p. 80). The principal axes of the Lagrangian strain-rate
tensor are parallel to the principal axes of the stretching tensor
(Eringen, 1962, p. 79). We use the convention that the termination
-ing is used to denote a kinematic quantity. Thus stretch is
a distortion and is a geometric term; stretching is the rate of
distortion and is a kinematic term.

For the materials we are concerned with in structural geology
the constitutive relation is expressed as

s ¼ FðD; TÞ (8)

where F is a function that involves the history of the stretchings
and temperatures that the material has experienced. In general F
evolves as anisotropy, hardening and softening develop in the
material as described by Houlsby and Puzrin (2006a). If softening or
hardening arises from chemical reactions then the evolution of F
has been described by Coussy and Ulm (1996). As F evolves to
account for the development of anisotropy and hardening (soft-
ening) the stress continues to be defined by an evolved version of
Fand the plastic part of the dissipation in (1) continues to be given
by the current value of sij _3

plastic
ij . The stress within a given material

at a particular temperature is fixed by the nature of F and by the
history of the movements that the material has experienced which
in turn is governed by the history of the imposed velocity or force
boundary conditions.
2.4. Overview of Section 2

The so called “Curie principle” of De Groot and Prigogine is
sometimes raised as an assertion that quantities of different tensorial
character cannot interact and hence that Eq. (1) cannot be used. The



B.E. Hobbs et al. / Journal of Structural Geology 33 (2011) 758e818764
statement in italics is simply a statement of the most elementary
rule in tensor algebra that says tensors of the same order may be
added to produce a tensor of the same order and has nothing to do
with the Curie Principle proposed by Curie. All the quantities in Eq.
(1) are scalars and hence Eq. (1) obeys this elementary rule. The
“Curie principle” as proposed by De Groot and Prigogine places no
restrictions on the partitioning of the rate of entropy production.

The constitutive laws of use in structural geology are those of
a solid where the stress within the material is given by the history
of the movements and temperatures that the material has experi-
enced. These movements and temperatures are in turn dictated by
the history of the boundary conditions. Thus the stress is controlled
by the kinematics of deformation and not by the geometry (that is,
the strain). For identical boundary conditions different solids
(single crystal, polycrystalline or amorphous) have different
stresses (and hence pressures) within them and evolve differently
with time as the material hardens or softens or develops various
forms of anisotropy. At each moment however during the defor-
mation and temperature histories the plastic dissipation is given by
the scalar quantity Fplastic ¼ sij _3

plastic
ij .
3. Principles of generalised thermodynamics

3.1. What is generalised thermodynamics?

Generalised Thermodynamics involves systems in which the
classical state variables such as temperature and entropy are sup-
plemented by other variables that define the state of a particular
system when it is not in equilibrium. These variables are called
internal variables (Kestin and Rice, 1970). All variables that define
the state of the non-equilibrium system are functions of both space
and time as opposed to Equilibrium Chemical Thermodynamics
where the state variables are commonly taken as homogeneous in
space at any particular time. For a system not at equilibrium, at any
instant, the internal variables are a function of position and in most
problems vary from point to point within the body. This means that
the concept of an extensive variable or extensive state function
proportional to the size of the body loses relevance. For this reason,
where possible, the classical extensive variables and extensive state
functions of Equilibrium Chemical Thermodynamics are replaced
by specific quantities. Thus the entropy [J K�1] and the Helmholtz
energy [J] are replaced by the specific entropy [J K�1 kg�1] and the
specific Helmholtz energy [J kg�1] and hence become intensive
variables or intensive state functions. In some instances it may be
convenient to use molar rather than specific quantities. This means
that in general only intensive variables that have a value at each
point in the body are considered in Generalised Thermodynamics.

Generalised Thermodynamics treats systems at equilibrium or
far from equilibrium. In seeking a general term to describe this
topic we borrow the term Generalised Thermodynamics from
Houlsby and Puzrin (2006a). Generalised Thermodynamics is
closely related to what Lavenda (1978) called Continuum Thermo-
dynamics. Lavenda hoped that such a topic would ultimately
become a “truly non-linear thermodynamic theory of continua”
that would come about “through a synthesis of thermodynamic
and kinetic concepts”. In fact that synthesis is what we strive for
here also although there is clearly still a long way to go. The term
non-equilibrium thermodynamics is closely associatedwith thework
of De Groot (1952) and Prigogine (1955). Although clearly many
aspects of their approach contributed to modern thermodynamics,
for reasons mentioned elsewhere some concepts within that body
of work are not accepted here. Aspects of the De GrootePrigogine
approach have been thoroughly criticised by Truesdell (1966,1969),
Lavenda (1978) and Ross (2008).
The basic principle governing the description of equilibrium
states is that for appropriate boundary conditions the Gibbs energy
is a minimum; an equivalent statement is that the entropy is
a maximum. This statement carries with it the connotation that, at
equilibrium, the entropy production rate is zero. We use this
statement that the entropy production rate is zero as a definition of
an equilibrium state. The rate of entropy production plays a major
role in the study of non-equilibrium systems and is commonly
expressed as the ClausiuseDuhem relation (Truesdell and Noll,
1965) whichwe explore in Section 3.3. Eq. (1) is a general statement
of the ClausiuseDuhem relation. For many systems (particularly
many mechanical systems) the entropy production rate is
a maximum (Ziegler, 1963) although there is considerable confu-
sion andmuch discussion in the literature (Rajagopal and Srinivasa,
2004; Martyushev and Selezvev, 2006) concerning maximum and
minimum entropy production rate principles. However, as dis-
cussed below, for some deforming systems, particularly those
involving the development of multiple stationary states, and
chemically reacting systems these principles do not hold (Ross and
Vlad, 2005; Ross, 2008) and other means of exploring the evolution
of such systems are necessary. This invariably involves a consider-
ation of entropy production rates and hence some form of the
ClausiuseDuhem relation.

A recent approach (Ortiz and Repetto, 1999; Miehe and Lam-
brecht, 2003) in systems that dissipate energy is to track the
evolution of the system by incrementally minimising the Helm-
holtz energy of the system. It is becoming apparent that criticality
(Sornette, 2000) in deformingereacting systems is a concept that
needs considerable attention in structural geology. Systems
become critical at a critical point where the Helmholtz energy as
a function of some measure of the deformation ceases to be convex
and becomes non-convex. This leads to the formation of sub-
domains within the system together with the dissipation of energy
and hence these processes act as stored energy minimisers. Herein
lies the origin of a large number of apparently unrelated fabrics
such as microlithons, crenulation cleavages, metamorphic differ-
entiation, recrystallisation by subgrain rotation and the crustal
scale plumbing systems for melt migration. Notice that we specif-
ically do not use the term “self-organised criticality” but prefer to
resort to more classical concepts of criticality (Sornette, 2000; Ben-
Zion, 2008).

Generalised Thermodynamics has now developed into a quite
general science of the flux of energy through systems and supple-
ments the classical approach to mechanics that involves only the
continuity of mass and of momentum. Thermodynamics adds an
extra dimension to the study of systems not at equilibrium in that it
supplies rules by which the evolution of the system with time may
be described. In principle a thermodynamic approach has the
potential to integrate the complete range of processes of interest to
structural geologists such as deformation (both rate-dependent
and rate-independent deformations), heat flux, mineral reactions
and mass transport, fluid flow, microstructural changes such as
recrystallisation, grain-size reduction and fracturing, and crystal-
lographic preferred orientation development. A formal framework
for tackling non-equilibrium problems has evolved through the
work of people such as Onsager (1931a, b); Biot (1955, 1958, 1978,
1984), Coleman and Gurtin (1967), Truesdell (1969), Rice (1971,
1975), Lavenda (1978), Ziegler (1963, 1983), Coussy (1995, 2004,
2010), Collins and Houlsby (1997), Maugin (1999), Ortiz and
Repetto (1999); Collins and Hilder (2002), Rajagopal and Srinivasa
(2004), Houlsby and Puzrin (2006a), Ross (2008) and Ross and
Villaverde (2010); the framework developed here derives from that
body of work. The list explicitly excludes contributions such as De
Groot (1952) and Prigogine (1955); as indicated elsewhere that
work contains a number of misconceptions including in particular
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that systems “close” to equilibrium are linear whereas those “far”
from equilibrium are non-linear; that “the Curie principle” as
expressed by these authors is valid or even has meaning; that the
evolution of chemical and thermal systems involves a principle
called the “Principle of Minimum Entropy Production Rate”; and
that only systems “far” from equilibrium can form “dissipative
structures”. Subsequent work (Ziegler, 1963; Truesdell 1966, 1969;
Hunt et al. 1987, 1988; Ross and Vlad, 2005; Ross, 2008) has shown
that all of these concepts are without merit.

Equilibrium Chemical Thermodynamics as developed by Gibbs
(1906) depends on the construction of a function, the Gibbs energy,
G, which enables an equilibrium state for the system to be defined
under the imposed conditions which in turn are defined by state
variables such as pressure, P, and absolute temperature, T. The Gibbs
energy is a function of these state variables: G ¼ GðP; TÞ and is
given by G ¼Jþ PVwhere P is the pressure and V the volume.J is
the Helmholtz energy given by J ¼ U � Ts where U is the internal
energy. A useful discussion of these quantities within both the
context of equilibrium systems and solid/fluid systems not at
equilibrium is given by Coussy (2010). If DG is the Gibbs energy
change associated with a chemical reaction then the condition for
equilibrium is DG ¼ 0 when

dDG
dt

¼ 0 (9)

and G is a minimum; t is time.We use the term equilibrium tomean
a stationary state where all processes have ceased (zero entropy
production rate). Steady state refers to a stationary state where
processes still operate but the rates are independent of time (non-
zero entropy production rate).

The state variables here are quantities that have unique non-
zero values in the equilibrium state and these values must be
independent of the path by which the equilibrium state was
attained otherwise many different values of the state variables
could define an equilibrium state. An outcome is that gradients in
the state variables cannot exist at equilibrium for then G would
have different values at different places in the system. Hence
Equilibrium Chemical Thermodynamics considers systems where
the temperature and pressure have the same values everywhere.
Note however that the condition that T and P be the same every-
where is not a condition for the existence of the Gibbs energy.
Despite claims to the contrary (McLellan, 1980, p. 193) the specific
Gibbs energy is defined for a stressed system simply as the Leg-
endre Transform of the Helmholtz energy (Rice, 1975; Biot, 1984;
Houlsby and Puzrin, 2006a).

In Generalised Thermodynamics the specific Gibbs energy can
have different values both in space and time within the system.
However, as discussed below, the Gibbs energy is not useful in
deforming systems unless the constitutive relation for the material
and the deformation history is prescribed. The Helmholtz energy is
the important quantity in deforming systems. The state and
Table 2
State or internal variables and conjugate variables used in Generalised Thermodynamics

State or Internal Variable Conjugate Variable Descriptions

3elasticij sij Elastic strain; Stress
3plasticij cij Plastic strain; Generalised stres
T s Absolute temperature; Entropy
x A Extent of chemical reaction; Af
dij Yij Tensor measure of damage; Ge
mK mK Concentration of Kth chemical
d cdij Grain-size; Generalised stress a
z Pfluid Variation of fluid content; Pore
bij Bij Tensor measure of crystallogra

crystallographic preferred orien
internal variables still define the state of the system but they too are
functions of space and time so that gradients in these variables can
exist and indeed these gradients can be internal variables in their
own right (Kestin and Rice, 1970). Thus both 7T and 7m can be
used as internal variables where7 is the gradient operator and m is
a chemical potential since both of these gradients reduce to zero at
equilibrium. The only provisos on the internal variables in Gener-
alised Thermodynamics are: (i) they are valid mathematical,
physical and/or chemical quantities, (ii) they are objective in the
sense that some measure of them is independent of the coordinate
frame used, and (iii) they approach equilibrium values as equilib-
rium is approached. Some examples of internal variables used in
the study of deforming metamorphic systems are given in Table 2.

In Table 2, the time derivatives of those quantities labelled State
or Internal Variables are commonly referred to as “thermodynamic
fluxes” whereas those labelled Conjugate Variables are commonly
referred to as “thermodynamic forces” or as “generalised stresses”.
The terminology is unfortunate since in general neither the “fluxes”
nor the “forces/stresses” have the indicated physical significance
but the usage is firmly entrenched and useful. In Table 3 we list the
thermodynamic fluxes and the conjugate thermodynamic forces
for some processes of interest to structural geologists. A funda-
mental observation from Table 3 is that for processes such as
thermal conduction, non-isothermal chemical diffusion and
chemical reactions, the “fluxes” are never linear functions of the
“forces”. This observation is important when we come to consider
extremum principles below. If the thermodynamic fluxes are
proportional to the thermodynamic forces (as in many mechanical
and fluid flow systems and in processes such as isothermal mass
diffusion) the system is said to be “thermodynamically linear”.
Otherwise (and this includes non-isothermal mass diffusion,
thermal conduction and all chemical reactions) the system is said to
be “thermodynamically non-linear”. Thus, even chemical systems
are thermodynamically non-linear no matter if they be “close” or
“far” from equilibrium (Hunt et al. 1987, 1988). The temperature
times the entropy production rate for a particular process equals
the thermodynamic fluxmultiplied by the thermodynamic force. In
Table 3, Kthermal is the thermal conductivity, Kfluid is the fluid
permeability, D is the mass diffusivity or diffusion coefficient, k is
Boltzman’s constant, _x is the chemical reaction rate, h is the
viscosity and rþ, r� are the forward and reverse reaction rates for
a chemical reaction.

In applying the concepts of Equilibrium Chemical Thermody-
namics for small strains to deforming-reactive solids, one replaces
the mechanical role of the pressure, P, by the Cauchy stress tensor,
sij, and the mechanical role arising from small changes in the
specific volume, V, by the small strain tensor, 3ij (Houlsby and
Puzrin, 2006a). The restriction to small strains is not an undue
limitation since one is commonly concerned with developing
incremental approaches that can be implemented in finite element
or finite difference codes.
relevant to Structural Geology.

s (Houlsby and Puzrin, 2006a)

finity of chemical reaction (Kondepudi and Prigogine, 1998)
neralised damage stress (Lyakhovsky et al., 1997; Karrech et al., 2011)
component; Chemical potential of Kth chemical component (Coussy, 1995, 2004)
ssociated with grain-size evolution
pressure of fluid (Detournay and Cheng, 1993; Coussy, 1995)
phic preferred orientation; Generalised stress driving
tation development. (Faria, 2006a, c, Faria et al., 2006b)



Table 3
Thermodynamic fluxes and forces for some common processes.

Process Thermodynamic flux Thermodynamic force

Deformation of Newtonian
viscous material

Strain-rate, _3ij Cauchy stress, sij
_3ij ¼ h�1sij

Deformation of Non-Newtonian
viscous material

Strain-rate, _3ij Cauchy stress, sij
_3ij ¼ AsijðJ2Þ

N�1
2

Thermal conduction Thermal flux, Jthermal
7T�1

Jthermal ¼ �KthermalVT
Chemical diffusion Mass flux, Jmass V

m

T
Jmass ¼ �DVm

Fluid flow Darcy velocity, u 7Pfluid

u ¼ �KfluidVPfluid

Chemical reaction Reaction rate, _x Affinity kTln½rþr��
_x ¼ ½rþ � r��
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Taking tensile stresses as positive, the pressure, P, and specific
volume, V, are now given by:

P ¼ � 1
3
skk and V ¼ V0ð1þ 3kkÞ ¼ 1

r
(10)

where V0 is the initial specific volume and r is the current density.
The initial density, r0, is 1/V0. In a conceptual mapping of the
quantities used in Equilibrium Chemical Thermodynamics, P is
replaced by �skk and V by V0ð13dij þ 3ijÞ where dij is the Kronecker
delta. Thus PV is replaced by �sijV0ð13dij þ 3ijÞ ¼ �V0ð13skk þ sij3ijÞ
¼ PV0 � V0sij3ij.

The expressions for the specific internal energy, U, the specific
Helmholtz energy, J, the specific enthalpy, H, and the specific
Gibbs energy, G, are then given as in Table 4. Also given in Table 4
are expressions for the conjugate variables {sij, 3ij} and {s, T} in
terms of U, J, H and G.

3.2. Extremum principles and system behaviour

The extremum principle universally used in Equilibrium
Chemical Thermodynamics is that the Gibbs energy is a minimum
at equilibrium. This principle has proved very powerful and has
allowed exceptional progress in the construction of mineral phase
equilibrium diagrams for quite complicated metamorphic reactions
and bulk chemical compositions (Powell et al., 1998). However for
systems not at equilibrium some other principle, or set of princi-
ples, would be useful in describing the evolution of the system as it
proceeds towards equilibrium or is maintained far from equilib-
rium by fluxes of energy and/or mass. The extremum principles
that have evolved over the past 30 years all involve a statement
concerning the entropy production rate, the most general of which
is the ClausiuseDuhem relation.

Awell knownexample in structural geology is representedby the
Taylor (1938) and BishopeHill (Bishop and Hill, 1951) extremum
principles used in calculating the evolution of crystallographic
Table 4
Thermodynamic quantities used in the small strain formulation of Generalised
Thermodynamics (After Houlsby and Puzrin, 2006a).

Specific Internal
Energy

Specific Helmholtz
Energy

Specific
Enthalpy

Specific Gibbs
Energy

U ¼ Uð3ij; sÞ J ¼ Jð3ij; TÞ
J ¼ U � sT

H ¼ Hðsij; sÞ
H ¼ U � Vosij3ij

G ¼ Gðsij; TÞ
G ¼ H � sT

G ¼ J� Vosij3ij

Vosij ¼ vU
v3ij

T ¼ vU
vs

Vosij ¼ vJ
v3ij

s ¼ � vJ
vT

3ij ¼ �r0
vH
vsij

T ¼ vH
vs

3ij ¼ �ro
vG
vsij

s ¼ � vG
vT
preferred orientations (Lister et al., 1978). The Taylor principle says:
In a deforming polycrystal, for a given imposed strain-increment, the
energy dissipation by the shear strains on the slip systems (with spec-
ified critical resolved shear stresses) needed to accomplish that strain-
increment is a minimum. The BishopeHill principle is the linear
programming dual of the Taylor principle and says that: In
a deforming polycrystal, for a given imposed strain-increment, the
stress state that actually exists within the deforming crystal is that
which maximises the energy dissipation. We will see that the Bish-
opeHill principle is equivalent to the Ziegler (1963, 1983) principle
of maximum entropy production rate. The BishopeHill maximum
work principle chooses that stress tensor in the deforming crystal
which is as close as possible parallel to the imposed strain-rate
tensor subject to the constraint that the imposed strain-increment
must be achieved only by slip systems that define the yield surface.

In order to proceed with the task of specifying principles that
govern the evolution of non-equilibrium systems it is convenient to
divide systems into those with single and multiple stationary
states. A stationary state is one where the time rate of change of
a particular variable is zero. A common example is a simple
chemical systemwhere one stationary state is an equilibrium state
defined by the reaction rate being zero. Such a system has a single
equilibrium stationary state (Hobbs and Ord, 2010a).

However even a simple chemical system such as

Aþ B%
kþ

k�
Cþ D (11)

has another stationary state where the rate of production of
a chemical component is zero but the forward and/or reverse
chemical reactions are still in progress Thus such reactions have at
least two stationary states, one an equilibrium state and the other
a steady non-equilibrium state given through the law of mass
action by an equation of the form (Kondepudi and Prigogine, 1998):

_x ¼ �dA
dt

¼ kþAB� k�CD ¼ 0 (12)

where x is the extent of the reaction (Kondepudi and Prigogine,
1998), _x is the reaction rate and A, B, C, D are written as the
concentrations of the chemical components A, B, C, D. We use
concentrations throughout this paper for simplicity although the
discussion can be extended to use activities instead of concentra-
tions (Ross, 2008, Chapter 9). kþ and k� are the rate constants for
the forward and reverse reactions in Eq. (11).

Deforming non-linear elastic systems represent perhaps the
simplest manifestation of systems with multiple stationary states
and we include a brief description to highlight that even in such
systems the evolution of the system can be complex, even chaotic.
In linear elastic systems undergoing deformation it appears that
only one equilibrium stationary state exists and that is the one that
maximises the stored elastic energy (McLellan, 1980, pp. 313e314).
This is the only stationary state that can exist for an adiabatically
deforming linear elastic system. However for non-linear elastic
systems where the non-linearity is introduced via a softening of the
elastic modulus arising from some form of elastic damage or from
geometrical softening arising from large rotations, multiple equi-
librium stationary states commonly exist (Hunt and Wadee, 1991;
Ericksen, 1998; Hunt et al., 1997a, b, 2000, 2001, 2006; Budd et al.,
2001) and correspond to non-convex forms of the Helmholtz
energy function. By non-convex here we mean that a plot of the
Helmholtz energy against some measure of the deformation or
deformation gradient has a number of “bumps” or discontinuities
in it. This results in the development of kink, chevron and
concentric folds in layered elastic materials (Section 5.3). The
extremum principle involves the development of minima in the
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stored elastic energy and corresponds to points where the stored
elastic energy matches the energy required for slip on the layers.
Such a principle corresponds to the Maxwell construction common
in chemical systems involving two or more phases (Kondepudi and
Prigogine, 1998) and represents a lower bound for the force
required for the initiation of folding. However the first bifurcation
in the system occurs after the peak stress is attained (Tvergaard and
Needleman, 1980; Hunt and Wadee, 1991). Sequential bifurcations
occur as the system jumps from one equilibrium stationary state to
another although complexity can arise due to mode locking (Hunt
and Everall, 1999; Everall and Hunt 1999). All such behaviour in an
adiabatically deformed elastic system represents a progression
through a series of equilibrium states and a full description of the
system evolution relies on non-linear bifurcation theory (Guck-
enheimer and Holmes, 1986; Wiggins, 2003). In addition, softening
behaviour can lead to localisation of fold packets in layered mate-
rials and a progression to chaos with fractal geometries (Hunt and
Wadee, 1991). Multiple stationary states have also been described
in deforming visco-elastic systems (Cheng and Zhang, 1999) and
are well known in the study of martensitic transformations
(Ericksen, 1998) and in the development of microstructure in
anisotropic materials (Truskinovsky and Zanzotto, 1995, 1996).
Examples of multiple stationary states arising from thermal-
emechanical feedback in mantle deformations are discussed by
Yuen and Schubert (1979). In chemical systems multiple stationary
states are common (Epstein and Pojman, 1998; Ross, 2008) and are
considered in detail in Section 4.1. The fundamental principle
involved in understanding the evolution of these kinds of
mechanical systems is that the Helmholtz energy is no longer
convex and the system evolves to minimise the Helmholtz energy
by forming a series of finer structures or chemical domains that
lead to compatibility with the imposed deformation (Ball,1977; Ball
and James, 1987; Ortiz and Repetto, 1999). We explore such
behaviour in detail in Sections 4.10 and 5.3. The transition from
convex to non-convex Helmholtz energy functions is the hallmark
of critical phenomena (Sornette, 2000; Ben-Zion, 2008) so that
such behaviour seems to be a fundamental and universal aspect of
deformingereacting systems.

In systems with a single non-equilibrium stationary state, the
commonly quoted extremum principle is that the entropy produc-
tion is minimised (Prigogine, 1955; Biot, 1958). Examples of such
systems that are widely quoted are steady heat conduction in
a material with constant thermal conductivity (Kondepudi and Pri-
gogine,1998) and simple, uncoupled chemical reactions (Kondepudi
and Prigogine, 1998). However Ross and Vlad (2005 and references
therein) and Ross (2008, Chapter 12) show that, for these two clas-
sical systems, there is no extremum in the entropy production rate. It
is only for systems where the relationship between thermodynamic
Fig. 3. Yield and dissipation surfaces. One is the Legendre transform of the other. Each dia
coordinate axes are the components of the Cauchy stress, sij. (b) The dissipation surface. Th
d_3dissipativeij .
fluxes and forces is linear that an extremum exists for the entropy
production rate and this corresponds to a stationary state that is not
an equilibrium state. If the relationship between thermodynamic
fluxes and forces is non-linear then only one extremum in the
entropy production rate exists and that is an equilibrium state. The
linear situation is that commonly quoted and discussed by Prigogine
(1955), Kondepudi and Prigogine (1998) and a host of others.
However reference to Table 3 shows that at least for thermal
conduction and chemical reactions the thermodynamic fluxes are
not proportional to the thermodynamic forces. For mass diffusive
processes the thermodynamic flux is proportional to the thermo-
dynamic force only for isothermal situations. For further discussion
and clarification of what is meant by “close” and “far” from equilib-
rium reference should be made to the interchange between Hunt,
Hunt, Ross, Vlad and Kondepudi (Hunt et al. 1987, 1988; Kondepudi,
1988; Ross and Vlad, 2005; Ross, 2008).

For some systems (and this involves many mechanical systems;
Houlsby and Puzrin, 2006a, b) the entropy production rate is
maximised. Ziegler (1963 and references therein) seems to have
been the first to propose this principle althoughwewill see that the
principle of maximum work proposed by Bishop and Hill (1951) is
identical to that of Ziegler; Ziegler (1963) gives a good summary of
other related principles. The Ziegler principle appears to hold, and
is a powerful tool for defining the evolution of simple plastic
deformations (Houlsby and Puzrin, 2006a, b). In order to under-
stand Ziegler’s arguments it is instructive to examine two ways in
which the relationship between stress and dissipative strain-rate
can be graphically represented. The first way, the yield surface, is
well known and widely used. This surface was discussed in relation
to localisation in rate-independent materials by Hobbs et al. (1990)
and is shown in Fig. 3(a). The yield surface is drawn in stress space
and stress states within the surface correspond to elastic defor-
mations while stress states on the yield surface correspond to
plastic deformations. If the yield surface corresponds to a function f
(sij) then the condition for plastic yield is f ¼ 0 while f < 0 corre-
sponds to elastic deformations. Stress states corresponding to f > 0
are physically unrealistic. If no volume change accompanies plastic
deformation then the increment of plastic strain-rate, _3dissipativeij
associated with the stress, sij, is normal to the yield surface at the
end point of the stress vector (Fig. 3a) and is given by _3ij ¼ l vf

vsij

where l is a constant known as a plastic multiplier. The dissipation
is the scalar product of the stress and the incremental strain-rate:
T _s ¼ F ¼ sij _3

dissipative
ij . One can see from Fig. 3a that F is always

positive in accordance with the second law of thermodynamics.
One can also plot another surface, the dissipation surface in

strain-rate space (Fig. 3b) for a particular value of the dissipation
function, F ¼ F0. Ziegler (1963, 1983) showed that for uncoupled
deformations the stress corresponding to a particular strain-rate
gram is a two dimensional section through six dimensions. (a) The yield surface. The
e coordinate axes are the components of the incremental dissipative strain-rate tensor,
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increment is orthogonal to the dissipation surface at the endpoint of
the strain-rate vector (Fig. 3b) and is given by sij ¼ n vF

v_3dissipativeij

where n
is a constant. Thus the yield surface and the dissipation surface are
complementary to each other (Collins and Houlsby, 1997; Houlsby
and Puzrin, 2006a) and in fact, just as the Gibbs energy can be
obtained from the Helmholtz energy through a Legendre Trans-
formation (Callen, 1960; Powell et al., 2005; Houlsby and Puzrin,
2006a) and vice versa, the yield surface can be obtained from the
dissipation surface through a Legendre Transformation (Collins and
Houlsby, 1997; Houlsby and Puzrin, 2006a) and vice versa.

As far as this review is concerned the importance of the Ziegler
orthogonality relation is better seen by redrawing Fig. 3b as in Fig. 4
(a). In this figure the strain-rate vector touches the dissipation
surface, F ¼ Fo at P where the tangent TPT0 is drawn. The Zeigler
orthogonality relation says that the stress vector associated with
the strain-rate is normal to this tangent. The dissipation (and hence
the entropy production rate at a given temperature) is the scalar
product of the strain-rate with the stress (or the projection of the
strain-rate vector on to the stress vector). One can see from Fig. 4(a)
that, because of the convexity of the dissipation surface, this scalar
product is a maximum for the stress and strain that obey the
orthogonality relation. For all other strain-rate vectors the scalar
product with the stress is smaller. This is a graphical demonstration
of the Ziegler principle of maximum entropy production rate which
says that of all possible stress states the stress that is actually
associated with a particular strain-rate produces a maximum in the
entropy production rate. Although this argument depends on the
convexity of the dissipation surface, Houlsby and Puzrin (1999)
point out that the Ziegler principle holds also for weakly non-
convex yield surfaces and for non associated flow (where the
incremental strain-rate vector is not normal to the yield surface).

The BishopeHill theory of crystal plasticity is illustrated in Fig. 4
(b) where a section through the dissipation surface for a crystal
undergoing deformation on multiple slip systems is shown. The
same arguments as apply to Fig. 4(a) hold except now there is an
ambiguity in the orientation of the tangent to the dissipation
surface at a corner. Nevertheless the overall argument concerning
entropy production rate holds as in Fig. 4(a).

3.2.1. Biot’s thermodynamic approach
Biot developed a theory of quasi-static deformation (that is,

inertia is neglected) based on a non-equilibrium thermodynamics
approach derived fromOnsager (1931a, b). This development is best
presented in Biot (1955,1958,1978,1984). The essential features are
given below in a much abbreviated form. Consider a system dis-
placed from equilibrium by perturbations xi. At equilibrium, xi ¼ 0.
Fig. 4. Illustration of Ziegler’s principle of maximum entropy production rate. The dissipati
imposed strain-rate is normal to the dissipation surface at P. Of all other possible strain-rate
vector is smaller than the projection of the imposed strain-rate vector. This means that th
distance of the tangent plane TPT0 from the origin, O, is the work done by the stress during th
crystal plasticity. The argument for (a) follows even though there is ambiguity with respec
These xi represent oneof thefirst references to internal variables and
they define the thermodynamic state of a systemnot at equilibrium.
They may be scalars such as temperature, the number of moles of
chemical species or the variation in fluid content (Detournay and
Cheng, 1993). Or they may be vectors or tensors such as displace-
ment vectors or the elastic strain tensor. Then Biot proposed that the
specific Helmholtz energy of the system,J, may be written

J ¼ 1
2
aijxixj (13)

and the specific dissipation function, F, as

F ¼ 1
2
bij _xi _xj (14)

The dot on _xi represents the material time derivative. aij and bij
are tensors that relate the thermodynamic force to the conjugate
variable in Eq. (13) or to the thermodynamic flux in Eq. (14).

Biot proceeds to show that the evolution of the system may be
described by an expressionwhich is now known in the literature as
Biot’s Equation for a standard dissipative system (Nguyen, 2000;
Miehe and Lambrecht, 2003):

vJ

vxi
þ vF

v _xi
¼ 0 (15)

Or, if the system is under the influence of external thermody-
namic forces, Qi, then

vJ

vxi
þ vF

v _xi
¼ Qi (16)

Biot discusses a layered system and explores solutions to Eq.
(15) of the form

x ¼ x0exp½ut� (17)

where u is an amplification factor, and t is time. If u is negative, the
perturbations decay in amplitudewith time and the system returns
to equilibrium. However if u is positive then the perturbations
grow exponentially with time and some form of patterning
develops. The point of this discussion is that Biot proposes that the
stability and evolution of the system can be described with the use
of just two functions, the Helmholtz energy and the dissipation
function, an observation emphasised again much later by Houlsby
and Puzrin (2006a, b) and which is the basis for Generalised
Thermodynamics as described here.
on surface is drawn in incremental strain-rate space. (a) The stress associated with the
vectors, for example d_3A and d_3B , the projection of the strain-rate vector on to the stress
e dissipation arising from the stress and the imposed strain-rate is a maximum. The
e imposed strain-rate increment. (b) The equivalent of (a) drawn for multiple slip single
t to the orientation of the tangent at the corner of the yield surface.
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Biot (1965, pp. 340e349) considers a thin rod of initial length,
a deformed by a load, P parallel to the initial orientation of the rod,
and constrained laterally by a viscous mediumwith viscosity, h. The
possible sideways deflections of the rod, w, are expressed as
a Fourier series:

w ¼
XN
n¼1

qnsin
�
np

x
a

�
(18)

where qn are amplitudes of the deflections, n is an integer, and x is
the coordinate parallel to the initial orientation of the rod. Then
Biot shows that the dissipation function and the Helmholtz energy
of the system are related by Eq. (15) with a solution given by Eq.
(17) and u given by

u ¼ p2n2

ha2

�
P � n2Pc

�
(19)

where Pc is a critical buckling load. Thus, unstable modes grow if
P > n2Pc and u is a maximum for a value of n representing the
number of half-waves in which the rod buckles. This argument,
together with the assumption that the deflections can be expressed
in terms of a Fourier series, leads to the development of a strictly
periodic result with the corresponding wavelength known as the
dominant wavelength.

A summary of various extremum principles is given in Table 5.
One can see that despite the various apparently conflicting
formulations, all except the “minimum entropy production rate”
principle of Prigogine and De Groot are equivalent and expressed
by Ziegler’s principle of maximum entropy production rate. One
should be aware of the definitive discussions by Ziegler (1963),
Hunt et al. (1987, 1988) and by Ross and Vlad (2005) before one
embarks on the formidable and confusing task of reading the
literature in this area.
3.3. Thermodynamic formulation

The above discussion has shown that in most non-linear
systems there is no extremum entropy production theorem that
enables us to explore the evolution of the system when not at
equilibrium. Progress can bemade however by deriving the general
expression for entropy production rate in the system of interest and
Table 5
A summary of various extremum principles proposed in non-equilibrium thermodynam

Extremum Principle Statement of Principle

Ziegler’s principle of maximum
entropy production rate (Ziegler, 1963)

If the stress is prescribed the actual s
maximises the entropy production ra

Onsager’s Reciprocity Relations
and principle of least
dissipation of energy (Onsager, 1931a,b)

Once the thermodynamic forces are
thermodynamic fluxes maximise the
consequence of the classical Onsager
See Ziegler (1963)

Biot’s principle of minimum
entropy production rate (Biot, 1955)

If the stress and the rate of stress are
actual strain-rate minimises the diss

Prigogine’s principle of minimum
entropy production rate. (Prigogine, 1955)

If there are n thermodynamic forces
are prescribed then the dissipation fu
by equating the k thermodynamic flu
for k ¼ j þ 1,..., n

Taylor’s minimum internal
work principle (Taylor, 1938)

For a prescribed deformation increm
on a polycrystal and a given set of cr
shear stresses the shears on the oper
systems minimise the work

BishopeHill maximum external
work principle (Bishop and Hill, 1951)

For a prescribed deformation increm
on a polycrystalthe stress state that d
that the operating slip systems maxi
This is the linear programming dual
then making various simplifying assumptions such as constant
temperature or no deformation. We show that this leads, at various
scales, to systems of coupled reaction-diffusion equations (Cross
and Hohenberg, 1993) or coupled reaction-diffusion-deformation
equations (Ortoleva, 1989). These represent convenient and useful
expressions of a combination of the first and second laws of
thermodynamics.

We present below a brief summary of the thermodynamic
framework used to couple various processes together so that the
coupling is thermodynamically admissible, that is, the framework
satisfies both the first and second laws of thermodynamics. The
framework presented is very conservative. Far more intricate
approaches are available such as the Extended Thermodynamics
framework (Jou et al., 1993, 2001), the GENERIC framework
(Ottinger, 2005), frameworks that involve the gradients of internal
variables (Shizawa and Zbib, 1999; Shizawa et al. 2001; Voyiadjis
and Dorgan, 2004) and approaches that involve finite deformations
(Houlsby and Puzrin, 2006b). The framework we present is suffi-
cient to illustrate the basic concepts. The interested reader is
encouraged to explore the more advanced literature and we
emphasise that the subject is advancing very rapidly. To a large
extent our treatment follows that of Rice (1975), Coussy (1995,
2004) and Houlsby and Puzrin (2006a).

In Equilibrium Chemical Thermodynamics the state of a system
is defined in terms of the Gibbs energy, G ¼ GðP;VÞ where P is
obtained from an equation of state or is prescribed independently,
usually as the lithostatic pressure. The equation of state is
commonly that of an ideal or non-ideal gas, an inviscid fluid or an
elastic solid (Stixrude and Lithgow-Bertelloni, 2005). Only in the
case of an elastic solid is the stress specified. In Generalised Ther-
modynamics the stress is obtained from the constitutive relation
Eq. (8) and the pressure is given by P ¼ �tr(s). Thus the pressure is
defined by the constitutive equation which is different for different
materials. In other words different materials subjected to identical
boundary conditions will have different values for the pressure,
P, within them. We are interested in defining the state of systems
independently of the constitutive equation (and hence does not
involve the stress or the pressure) and in tracking the evolution of
temperature in the system and so an energy function that involves
some measure of the deformation and the temperature is useful.
For this reason the Helmholtz energy rather than the Gibbs or
internal energy is generally the function of use.
ics.

Status

train-rate
te

True for many deforming systems; see
Ziegler (1963, 1983) and Ross (2008)

fixed the actual
dissipation. This is a
Reciprocity Relations.

Same as Ziegler’s principle. Restricted to
thermodynamically linear systems

prescribed the
ipation function

Same as Ziegler’s principle but was obtained
from Onsager’s principle

and j of these
nction is minimised
xes to zero

Conceptually of completely different form to
Ziegler’s principle but follows from Ziegler’s principle;
relies on the imposition of constraints; see
Ziegler (1963) and Ross (2008). For chemical and
thermal conduction processes the minimum entropy
production principle does not exist (Ross, 2008)

ent imposed
itical resolved
ating slip

Same as Ziegler’s principle

ent imposed
evelops is such
mise the work.
of the Taylor principle

Same as Ziegler’s principle
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Following Biot (1955, 1958) and Rice (1975) we define the
specific Helmholtz energy, J, as

J ¼ U � Ts ¼ J
�
3elasticij ; T ;mK ; xM;aQij

�
(20)

where U is the specific internal energy, T is the absolute tempera-
ture, s is the specific entropy, mK is the concentration (kg m�3) of
the Kth chemical component, xM is the extent of the Mth chemical
reaction and aQ is a parameter (scalar, vector or tensor) that
describes the state of some variable, Q, of interest such as amount of
damage, grain-size, degree of crystallographic preferred orienta-
tion and so on. If one wanted to incorporate the effects of changes
in mineralogy or of fabric during deformation it would be done
through the aQij term. Rice (1975) discusses the incorporation of
dislocations, diffusion and micro-fracturing. Quantities that are
conjugate to the internal variables expressed in Eq. (20) (following
arguments presented by Coussy, 1995, 2004, and by Houlsby and
Puzrin, 2006a; see also Tables 2 and 3) are

Vosij ¼
vJ

v3elasticij

(21a)

s ¼ � vJ

vT
(21b)

Vom
K ¼ � vJ

vmK (21c)

AM ¼ � vJ

vxM
(21d)

VoY
Q
ij ¼ � vJ

vaQij
(21e)

where sij is the Cauchy stress, mK is the specific chemical potential of
the Kth chemical component, AM is the affinity of theMth chemical
reaction and YQ is known as the “generalised stress” associatedwith
the Qth process and is the “driving force” for the Qth process.

We have seen that the second law of thermodynamics may be
written:

T _s¼F¼FmechanicalþFdiffusiveþFchemicalþFthermal�0 (22)

where F is the total dissipation function and Fmechanical, Fdiffusive,
Fchemical and Fthermal are the contributions to the total dissipation
rate from mechanical, mass diffusive, chemical reaction and
thermal transport processes respectively.

Specific statements of the dissipation functions associated with
various processes are (see Coussy, 1995; 2004)

Fmechanical ¼ Vosij _3
dissipative
ij þ Vom

K _mK þ s _T þ VoY
Q
ij
_aQij (23a)

Fdiffusive ¼ �VoJK �
�
VmK � vmK

vT
VT
�

(23b)

Fchemical ¼ AM _x
M þ _L

M
(23c)

Fthermal ¼ �cpkthermalV2T (23d)

where summation on K, M or Q is intended and K, M and Q take on
the values 1,.,a ,1,.,< and 1,..,Y respectively. In Eq. (23b), �
represents the scalar product of vectors; in Eq. (23c) _L

M
is the rate of
heat production from reactionM; in Eq. (23d) kthermal is the thermal
diffusivity and cp is the specific heat at constant pressure.

If we consider isothermal systems, as is commonly done in
metamorphic petrology, and neglect processes defined by Q in Eq.
(20), then Eq. (22) reduces to

T _s¼Vos : _3dissipativeþVom
K _mK�JK$VmK�AK _x

K� _L
K �0 (24)

where s : _3 is the scalar product of s and _3. Eq. (24) is the Clau-
siuseDuhem equation for an isothermal dissipative deforming
systemwith coupled chemical reactions and diffusivemass transfer
(Coussy, 1995, 2004). The importance of the equation is that it
involves an equality on the left hand side that enables the entropy
production rate to be completely specified.

For a non-isothermal system, if we assume that

_3totalij ¼ _3elasticij þ _3dissipativeij (25)

Then, using Eqs. (20) and (21), we can eventually arrive at the
Energy Equation (26) that expresses the change in temperature
arising from all of the dissipative processes and does not include
contributions from elastic deformations:

cp _T ¼ cVosij _3
dissipative
ij þ Vom

K _mK �
X
K

Fdiffusive
K

�
X
K

Fchemical
K � Fthermal ð26Þ

where c is the Taylor-Quinney coefficient and represents the
proportion of mechanical work arising from dissipative deforma-
tion that is available to increase the temperature or to drive diffu-
sion, chemical reactions and structural adjustments such as
fracturing or grain-size reduction. At high strains where the energy
arising from deformation is stored in crystal defects, c is generally
in the range 0.85 � c � 1 (Taylor and Quinney, 1934) and here we
assume c ¼ 1. The energy stored during deformation of calcite and
released during recrystallisation was studied by Gross (1965). For
a theoretical discussion of the amount of energy dissipated during
deformation in various materials and comparisons with experi-
ments see Stainier and Ortiz (2010).

For isothermal situations Eq. (26) reduces to a set of a coupled
reaction-diffusion-deformation equations (Section 3.4) of the form

Vom
K _mK ¼ JK$VmK þ AK _x

K þ _L
K � Voc

Ks : _3dissipative (27)

where summation on K is not intended but K takes on the values
1,.,a. cK is the proportion of energy dissipated by the deformation
partitioned to the Kth reaction.

3.4. Link to reaction-diffusion equations

Reaction-diffusion equations describe the behaviour of many
physical, biological and chemical systems and the behaviour of such
equations has been intensively studied, especially for chemical
systems, over the past 30 years. For an extensive review see Cross
and Hohenberg (1993); the subject is developed in detail byMurray
(1989). The general form of these equations for a two component
homogeneous chemical system is

du1
dt

¼ D1
v2u1
vx2

þ Fðu1;u2Þ
du2
dt

¼ D2
v2u2
vx2

þ Gðu1;u2Þ
(28)

where u1 and u2 are the concentrations of two chemical compo-
nents, D1 and D2 are the diffusion coefficients for these two
components, F and G generally are non-linear functions of
composition.
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If deformation is neglected in Eq. (27) these equations express
relations of the form:

[Time rate of change of concentration of chemical
component] ¼ [Change in component due to diffusion] þ [Rate
of formation of component � Rate of consumption of
component].
Or, taking the complete Eq. (27), we have
[Time rate of change of concentration of chemical
component] ¼ [Change in component due to diffusion] þ [Rate
of formation of component � Rate of consumption of
component] � [Rate of change of component driven by defor-
mation] (29)

The last term in square brackets in Eq. (29) represents processes
such as dissolution or precipitation of the relevant chemical
component driven by deformation. These processes feature promi-
nently in the models presented by Ortoleva (1994); other
approaches are givenwith examples by Ulm and Coussy (1995) and
Coussy and Ulm (1996). Equations such as (29) are characterised by
the development of instabilities if the system is driven from equi-
librium by processes such as deformation, input of heat or a flux of
chemical components. The instabilities commonly express them-
selves as some form of pattern formation in time, in the form of
oscillations in some chemical parameter such as oxidation state, or
in space in the form of patterns in chemical parameters. If the
instabilities are solely temporal in nature they are called waves of
which Hopf-instabilities are an example; if they are solely spatial in
nature they are called Turing instabilities (Turing, 1952). In practice
both forms of instabilities can form and compete with each other to
develop a variety of spatial patterns (Turing, 1952; Murray, 1989;
Epstein and Pojman, 1998, De Wit et al. 1996). Clearly, Turing
instabilities or other forms of spatial patterning of mineral compo-
sition (Ortoleva, 1994) would be expressed in deformed meta-
morphic rocks as some form ofmetamorphic differentiation andwe
explore this in greater detail in Sections 4.2e4.5. Early work on this
topicwas presented byOrtoleva and co-workers (see Ortoleva,1994
and references therein). The important point to note is that the
general equation that results for isothermal situations (Eq. 27) has
the same form as the reaction-diffusion-deformation equations.We
will see that most of the coupling between processes of interest in
structural geology at all scales is described byequations of this form.
Fig. 5. Two solutions to the SwifteHohenberg Equation (from solutions reported by Peletie
u ¼ aðsinb1x

b1
þ sinb2x

b2
Þ where a, b1 and b2 are constants. (b) A localised “kink” solution given

these equations and the values of the constants see Peletier and Troy (2001).
We have shown that a combination of the first and second laws
of thermodynamics says that the evolution of a quantity u within
a deforming reacting body is given in a one dimensional spatial
coordinate, x, by an equation of the form

vu
vt

¼ q
v2u
vx2

þ FðuÞ (30)

where F is commonly a non-linear function of u and q is a param-
eter with the dimensions of diffusivity. In many instances the
evolution of a system requires N coupled equations of the form of
Eq. (30) involving different quantities u1, u2,..., uN. Eq. (30) is
a standard reaction-diffusion equation that has been widely
studied over the past 50 years (Cross and Hohenberg, 1993).
A special form of Eq. (30) is the SwifteHohenberg equation (Cross
and Hohenberg, 1993, p. 873):

vu
vt

¼ v4u
vx4

þ q
v2u
vx2

þ FðuÞ (31)

Both Eqs. (30) and (31) appear in various forms as the basis for
describing many of the structures we observe in deforming meta-
morphic rocks. In particular, a stationary form of Eq. (31), that is,
where vu

vt ¼ 0, is

v4u
vx4

þ q
v2u
vx2

þ FðuÞ ¼ 0 (32)

Solutions to Eq. (32) take on many forms depending on the
values of q and the nature of F(u). These solutions can be sinusoidal,
localised, structured kinks and pulses, and chaotic; two solutions
are illustrated in Fig. 5 (Peletier and Troy, 2001). Some special forms
of Eqs. (30) and (32) as discussed later in this paper are:

(i) If F(u) is linear then Eq. (32) reduces to the standard bihar-
monic equation discussed widely in structural geology (Ram-
berg,1961,1963; Biot,1965; Ramsay,1967; Smith,1977) for the
buckling of a strong layer embedded in a weaker material. In
this case F(u) expresses the reaction forces exerted by the
embedding material on the layer as the layer buckles. The
solutions to the biharmonic equation for a linear F(u) are
strictly sinusoidal and play a prominent role in the classical
Biot theory of folding where u is the displacement of the layer
normal to its initial orientation.

(ii) If F(u) is a non-linear softening function then the application of
Eq. (32) to the buckling of layered materials results in fold
r and Troy, 2001). (a) A “multi-bump periodic” solution given by equations of the form
by u ¼ 1� expð�axÞ½cosbx� bffiffiffiffiffiffiffiffiffi

8�b
2

p sinbx� where a and b are constants. For details of
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systems more complicated than those arising from the Biot
theory. The buckles are now “multi-bumped” but periodic
(Fig. 5a), localised (Fig. 5b) and can be chaotic (Whiting and
Hunt, 1997). The structures that develop in the embedding
material are also localised and represent the development of
microlithons and axial plane cleavages.

(iii) If Eq. (30) is thought of as applying to N coupled chemical
reactions then chemically unstable behaviour can lead to
metamorphic differentiation and/or compositional zoning in
growing mineral grains.

(iv) Metamorphic differentiation resulting from Eq. (30) leads to
a sinusoidal reaction response of the embedding material on
a buckling layer which in turn, through Eq. (32), produces
localised folding with the metamorphic layering axial plane to
the folds.

Eqs. (30) and (32) have profound implications for structural-
metamorphic geology. Understanding the rich assemblage of
deformed metamorphic fabrics observed in Nature depends on
developing physically realistic and geologically relevant descrip-
tions of q and of F(u). The book by Peletier and Troy (2001) is
devoted to a detailed discussion of Eq. (32) and various forms of the
solutions developed by those authors are discussed in this paper.

3.5. The scale issue

Many processes that operate during deformation of rocks can be
expressed as diffusion equations. Thus diffusion of heat, of chemical
components and of fluid pressure is governed by equations of the
form: vc

vt ¼ kprocessv
2c

vx2 involving a diffusivity, k process, for the process.
c represents temperature, chemical concentration or fluid pressure.
If this process is coupled with deformation then the length scale,
lprocess, over which feedback is important is given by the standard
diffusion relationship (Carslaw and Jaeger, 1959), lprocess ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kprocesss

p
, where s is a time scale associated with the deformation.

We take s ¼ ð_3Þ�1 where _3 is the strain-rate; then lprocess ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kprocess=_3

p
. Values of lprocess are given in Table 6 which shows that

the length scale likely to characterise a particular coupled process
varies from kilometres to microns depending on the process and
the rate of deformation. For thermalemechanical coupling at
tectonic strain-rates the length scale is the kilometre scale (Rege-
nauer-Lieb and Yuen, 2004; Hobbs et al. 2008). Other scales have
been considered in Regenauer-Lieb et al. (2009) and Hobbs et al.
(2010a) where it is shown that the same fold mechanism (namely,
strain-rate softening) operates at outcrop and thin-section scales as
does at regional scales although different physical and chemical
processes are involved at the different scales.

As an example consider a shear zone of thickness h. Then the
heat dissipated by mechanical processes at a strain-rate _3 will be
Table 6
Length scales associated with various processes when coupled to deformation.

Process Diffusivity, m2 s�1 Strain

Heat conduction; slow deformations
(tectonic deformations)

10�6 10�12

Heat conduction; fast deformations
(slow to fast seismic)

10�6 10�2 t

Chemical diffusion; slow deformations
(tectonic deformations)

Say 10�10 to 10�16 10�12

Chemical diffusion; fast deformations
(slow to fast seismic)

Say 10�10 to 10�16 10�2 t

Fluid diffusion Depends on permeability 10�12

Chemical reactions No diffusivity. Coupling depends
on chemical dissipation
conducted out of the shear zone on a characteristic time scale
s ¼ h2/kthermal where kthermal has a value for most rocks of
10�6 m2 s�1. For a shear zone 1 km thick s ¼ 1012 s whereas for
a shear zone 1 m thick s ¼ 106 s (note that 1 yeary 3.1536 � 107 s).
If the shear zones deform at a shear strain-rate of 10�13 s�1 then the
time taken to reach 20% shear strain is 2 � 1012 s. Thus the thick
shear zone has the potential to heat up whereas the thin shear zone
remains isothermal. Note that if other endothermic processes such
as endothermic mineral reactions occur within the thick shear zone
then any heat generated by deformation may be used to enhance
reaction rates and the thick zone may remain close to isothermal. If
on the other hand the strain-rate is 10�2 s�1 (representing a slow
seismic event) then both the thick and thin shear zones heat up.
Further discussion on this matter is presented by Burg and Gerya
(2005) who point out that for a shear strain-rate of 10�12 s�1 and
a shear stress of 10 MPa the resulting dissipation compares in value
with radiogenic dissipation in crustal rocks. We consider these
aspects in Section 6.

3.6. Overview of Section 3

In Section 3 we have presented the foundations, derived from
Biot (1955, 1958) and from Rice (1975), for the remainder of this
paper by reviewing the thermodynamic basis for coupling various
processes such as deformation, mineral reactions, mass, and fluid
and thermal transport. It is perhaps surprising that the evolution of
systems not at equilibrium can be discussed in terms of just two
functions: (i) a function that defines the energy of the system
(usually the Helmholtz energy, J) and (ii) the dissipation function,
F ¼ T _s � 0, which specifies the rate of entropy production. Having
defined these two functions the coupling between processes is
governed by the manner in which the total rate of entropy
production is partitioned between the processes according to the
second law of thermodynamics Eq. (1).

The literature on systems not at equilibrium over the past 80
years has been dominated by attempts to arrive at extremum
principles for the rate of entropy production (Onsager, 1931a, b;
Prigogine, 1955; Biot, 1954, 1965, 1978; Ziegler, 1963, 1983) but in
the past 5 years the situation has been clarified by Ross and co-
workers (Ross and Vlad, 2005 and Ross, 2008, Chapter 12) who
show that for systems where the thermodynamic flux is a linear
function of the thermodynamic forces, an extremum exists for the
entropy production rate and this corresponds to a stationary state
that is not an equilibrium state. Ziegler (1963) showed that for
many plastically deforming systems this stationary state is
amaximum. If the relationship between thermodynamic fluxes and
forces is non-linear then only one extremum in the entropy
production rate exists and that is an equilibrium state. This has the
unfortunate repercussion that many of the claims made in the past
-rate, s�1 Length scale for process, m Reference

1000 Hobbs et al., 2008

o 102 10�2 to 10�4 Veveakis et al., 2010

10 to 10�2 Regenauer-Lieb et al., 2009

o 102 10�4 to 10�7 Veveakis et al., 2010

to 10�2 Any value from 103

to 10�4 depending
on permeability
All scales from 103 to 10�4 Hobbs et al., 2009a; Regenauer-Lieb

et al. 2009; Veveakis et al. 2010
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for processes such as thermal conduction and chemical reactions
(and even the origin of life!) are not generally true. For the
assumptions made by Biot (1955, 1965, 1978) his proposition of
minimum entropy production rate turns out to be identical to
Ziegler’s principle of maximum entropy production rate; the
considerable confusion arises from the manner in which the two
“principles” were phrased. For simple plastic systems Ziegler’s
principle of maximum entropy production rate remains true.

The outcome is that for general systems one needs to track the
total entropy production rate and hence recourse has to be made to
the ClausiuseDuhem relation which is an expression for the total
dissipation rate in a coupled system and is in fact simply an
expression of the second law of thermodynamics. This is especially
true for systems that are characterised bymultiple stationary states
and non-linear relations between the thermodynamic forces and
the thermodynamic fluxes (all chemical and thermal conduction
systems). Combining the ClausiuseDuhem relation with the first
law of thermodynamics results in the Energy Equation which
expresses the rate of change of temperature in the system arising
from all of the dissipative processes. For most situations the Energy
Equation reduces to some form of reaction-diffusion equation or
a set of coupled reaction-diffusion equations. The study of these
systems is accompanied by an immense literature. Reaction-diffu-
sion equations take on many forms but a particularly relevant form
for structural geology is the stationary form of the SwifteHohen-
berg Equation which describes all forms of buckling as well as the
development of axial plane structures such as microlithons and
crenulated metamorphic layering. For many systems of interest to
structural geologists the situation is simplified because specific
processes dominate the entropy production rate at particular
length scales. We explore these length scales in what follows. It
turns out that for some important systems the evolution of the
system can be considered incrementally as a series of steps that
minimise the Helmholtz energy; this approach seems to be
fundamental to the development of structures at all scales in
deformed rocks and turns out to be the essence of the development
of criticality in deforming-reacting systems.
4. The microscale

At the scale of approximately 1 m or less heat arising from any
dissipative process will diffuse out of a system of size L on a time
scale, s, given by s ¼ L2=kthermal. Taking L ¼ 1 m and
kthermal ¼ 10�6 m2 s�1 we obtain s ¼ 106 s which is small compared
to 1011 s, the time taken to reach 10% strain at a strain-rate of
10�12 s�1. Thus, given these assumptions, a cube of rock 1m on edge
and undergoing finite tectonic deformations can be considered to
remain isothermal. This means that the Energy Equation (26)
reduces to Eq. (27) and the processes at this scale can now be
coupled and considered in terms of reaction-diffusion or reaction-
diffusion-deformation equations of the type portrayed in Eqs.
(28)e(32).
4.1. Chemical reactions with no coupled diffusion

Many mineral reactions in deformed metamorphic rocks are
coupled in the sense that one mineral reaction proceeds in coop-
erationwith others. In other words the product of one reaction acts
as the reactant for another reaction. This conceptwas introduced by
Carmichael (1969) and has been explored by many others (Vernon,
2004 and references therein). These coupled reactions are called
cyclic reactions by Vernon and are well known in the chemical
literature as networked reactions (Clarke, 1976, 1980; Epstein and
Pojman, 1998). An example is the reaction:
kyanite/sillimanite (33)

which microstructural evidence (Carmichael, 1969) indicates is
better represented in many rocks by at least one pair of coupled
reactions of the form:

4kyanite þ 3quartz þ 2Kþ þ 3H2O/2muscovite þ 2Hþ

2muscovite þ 2Hþ/4sillimanite þ 3quartz þ 2Kþ þ 3H2O
(34)

In this set of coupled reactions quartz acts as a catalyst in the
sense that it appears in both the products and the reactants and
muscovite acts as a catalyst in the sense that it participates in the
reactions but does not appear in the final product of the reactions,
sillimanite. Carmichael (1969) gives other more complicated forms
of such coupled reactions and emphasises the importance of cata-
lysts in metamorphic reactions. If one is solely interested in ther-
modynamic equilibrium and the construction of mineral phase
diagrams, Eq. (33) is all that is needed; if one is interested in the
processes that operate during metamorphism then Eq. (33) is
irrelevant and Eq. (34) is fundamental. An example of networked
reactions from Whitmeyer and Wintsch (2005) is given in Fig. 6.

The opportunity exists in cyclic reactions for competition
between production and consumption of a particular chemical
component so that its concentration may oscillate in time if the
production and consumption occur at different rates. As the
equations for cyclic reactions are written by metamorphic petrol-
ogists the systems are never autocatalytic (Fisher and Lasaga, 1981;
Epstein and Pojman, 1998) with respect to mineral species and so
much of the rich variety of behaviour of coupled reactions dis-
cussed in the extensive literature on non-linear chemical kinetics is
not to be expected from the form of such equations. However if
intermediate reactions (especially redox reactions) are written in
combination with the standard equations then autocatalytic
behaviour appears. Moreover we will see below that heterogeneity
in the spatial distribution of reaction sites, and coupling of other
processes such as diffusion (Epstein and Pojman, 1998), deforma-
tion (Ortoleva, 1989) and fluid flow (Ortoleva et al. 1987; Rusinov
and Zhukov, 2000, 2008) can produce instability in otherwise
stable coupled chemical systems resulting in a rich variety of spatial
and temporal patterning. The definitive treatment for chemical
systems both with and without coupled diffusion is by Murray
(1989) but see also Epstein and Pojman (1998). The systematics
behind the behaviour of such systems is important for a variety of
processes (Sections 4.9, 6.3) other than chemical reactions and so
a brief review is given below. One should consult the above two
books for details.

Consider a set of cyclic reactions involving two chemical
components of interest, A and B, and where the rate equations of
the form of Eq. (28) may be written

F ¼ dA
dt

¼ FðA;BÞ; G ¼ dB
dt

¼ GðA;BÞ (35)

and for the moment we have neglected the diffusion terms. In Eq.
(35) A and B are written as the concentrations of A and B. The units
of concentration depend on the problem to be studied and because
of the diverse mathematical treatments reported in the literature
no firm rules can be laid down. The units are suitable to the
problem being considered and can be dimensionless (volume% or
mass%), mass per volume or moles per volume; these concentra-
tionsmay be in the solid or in an inter-granular fluid. The behaviour
of this system of cyclic reactions is best understood by plotting the
stationary states for the reactions in (AeB) compositional concen-
tration space (Fig. 7a and b). This means we plot the curves for F ¼
dA
dt ¼ 0 and G ¼ dB

dt ¼ 0. Such curves represent all values of the



Fig. 6. Cyclic reactions (fromWhitmeyer and Wintsch, 2005). (a) Quartz, biotite and muscovite act as catalysts. (b) Quartz ribbons produced by networked reactions in (a). Details of
specimen are in Whitmeyer and Wintsch (2005).
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stationary (non-equilibrium) states and are called null-clines. In
Fig. 7(a) the F null-cline is plotted where we have assumed that F is
a cubic. We see that for a specific concentration B* there are three
possible stationary values of A. The stability of a particular
stationary state can be seen by plotting arrows that indicate the
direction the relevant concentration will evolve if displaced from
the stationary state. In Fig. 7(a) points above the null-cline repre-
sent conditions where F ¼ dA

dt < 0 (that is, the reaction that
produces A at constant B moves the concentration of A to smaller
values) whereas points below represent conditions where F ¼ dA

dt >

0 (that is, the reaction that produces A at constant B moves the
concentration of A to larger values). Thus the arrows in Fig. 7(a)
indicate the ways in which the concentration of A will move if
displaced from the stationary state by a perturbation in concen-
tration. If vFvA < 0 then the stationary state is stable and if vFvA > 0 then
the stationary state is unstable. These conditions are derived by
Murray (1989) and Epstein and Pojman (1998). In Fig. 7(b) the
G null-cline is plotted. The behaviour of the system is governed by
the ways in which the two null-clines intersect and by the
magnitude of the non-stationary perturbation that is introduced. In
Fig. 7(c) a small displacement from the point P will cause the
system to oscillate as shown however a large displacement from
Pwould cause the system to evolve to one of the stable states where
vF
vA < 0. In Fig. 7(d) a perturbation thatmoves the system to the point
B means that the system undergoes large oscillations in time. The
oscillations are sustained in time so long as the system is main-
tained far from steady state. In Fig. 7(e and f) a small displacement
from O to L causes the system to spiral in to a steady state whereas
a large displacement from O to B causes the system to move to
a new steady state or to undergo a large amplitude migration back
to the initial steady state depending on the relations between the
F and G null-clines.

We define

F1 ¼
�
vF
vA

�
o
; F2 ¼

�
vF
vB

�
o
; G1 ¼

�
vG
vA

�
o
; G2 ¼

�
vG
vB

�
o

(36)

and

J ¼
"

vF
vA

vF
vB

vG
vA

vG
vB

#
o

¼
	
F1 F2
G1 G2



(37)

The subscript o indicates that the quantity is evaluated at
a stationary state when F ¼ 0 and G ¼ 0. That is, the derivatives are
calculated at A(x,t) ¼ Ao s 0 and B(x,t) ¼ Bo s 0. The trace and
determinant of J are written

Tr ¼ F1 þ G2 and D ¼ F1G2 � F2G1 (38)
The stability of the set of coupled equations is now determined
by the values that Tr and D take alongwith another quantity wewill
call G ¼ ðTrðJÞÞ2 � 4D. Details of the calculations involved are given
by Murray (1989) and Epstein and Pojman (1998) and the results
are given in Table 7 taken from Hobbs and Ord (2010a).

As an example, let us consider one of the simplest expressions of
homogeneous coupled reactions that can exhibit instability. The
rate equations are linear and given by:

F ¼ dA
dt

¼ aA� bB and G ¼ dB
dt

¼ cA� dB (39)

where a, b, c, d are rate constants. We then have F1 ¼ a; F2 ¼ �b;
G1 ¼ c; G2 ¼ �d so that Tr ¼ a e d; D ¼ bc e ad and
G ¼ (a þ d)2 � 4bc. We see from Table 7 that the following stability
states arise if bc > ad; that is if D > 0. The system is stable if d > a,
but in the stable mode can exhibit a stable node if 4bc < (a þ d)2 or
a stable focus if 4bc > (a þ d)2. If d < a then the system is unstable
and exhibits an unstable focus if 4bc < (a þ d)2 or an unstable node
if 4bc > (a þ d)2. On the other hand, if bc < ad then the system
exhibits a saddle point. If a¼ d and bc> ad a Hopf bifurcation arises.
This very simple system is capable of exhibiting all of the temporal
instabilities that are possible in such coupled systems. It has an
additional point of interest in that if diffusion is added to the
processes involved then the system is capable of exhibiting spatial
instabilities (Turing patterns) if d> a. An important characteristic of
the system with respect to the development of spatial instabilities
is that F1 has the opposite sign to G2 (Epstein and Pojman, 1998).

In simple systems these kinds of behaviour are relatively easy to
explore (Murray, 1989; Cross and Hohenberg, 1993; Epstein and
Pojman, 1998) but in highly non-linear reactions, such as are
common inmetamorphic rocks, the details of such instabilities may
be impossible to establish. By highly non-linear herewemean that F
andG in (35) are highly non-linear functions. An important theorem
in this regard is the PoincareeBendixson theorem (Andronov et al.,
1966; Strogatz,1994; Epstein and Pojman,1998) which states that if
a two component system is confined to a finite region of concen-
tration space then it must ultimately reach either a steady state or
oscillate periodically. Thus if one can demonstrate instability then
periodic oscillations of the systemmust exist although it may prove
impossible to define these explicitly. Clearly compositional zoning
can form by these oscillatory processes as suggested by Ortoleva
(1994) and we explore this topic in Section 4.8.

Carmichael (1969) presents highly non-linear coupled reactions
where one such reaction is:

43albiteþ 7Kþ þ 18ðMg; FeÞþþþ7H2O#17sillimanite

þ 6biotiteþmuscoviteþ 91quartzþ 43Naþ



Fig. 7. Stable and unstable oscillatory behaviour of systems in (A, B) composition concentration space depending on the relation between null-clines and the size of the perturbation
from steady state. (a) The F null-cline. Notice that above the F null-cline reactions that produce A at constant Bmove the concentration of A to the left whereas below the F null-cline
reactions that produce A at constant B move the concentration of A to the right. (b) The G null-cline. (c) Intersection of F and G null-clines. A small perturbation away from the
intersection P causes the system to oscillate about P. (d) A perturbation of the system to the point B causes large oscillations in composition. (e) A perturbation to L causes the system
to spiral back to the stationary state O. A perturbation to B causes the system to move to a new stationary state P. (f) A perturbation to B results in the system moving to the
stationary state O but through a large compositional loop.
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In these reactions it will probably prove quite difficult to define
the conditions for stability or instability (especially with respect to
redox and pH states) due to the algebraic opacity of the relations
involved and for such highly non-linear systems a number of
theoretical and graphical approaches has been developed. An
excellent summary of these methods is given in Epstein and
Pojman (1998, Chapter 5). In particular, the network methods
developed by Clarke (1976, 1980) deserve special consideration.
Recent developments are discussed by Schreibner and Ross
(2003).

The behaviour of two component systems such as given in Eq.
(35) may thus be of the following types:



Table 7
Stability criteria for two component coupled chemical reactions (From Hobbs and
Ord, 2010a).

Tr(J) D G Behaviour Phase Diagram

<0 >0 >0 Stable node

<0 >0 <0 Stable focus

>0 >0 <0 Unstable focus

>0 >0 >0 Unstable node

<0 Saddle point

¼0 >0 Hopf bifurcation
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(i) Stable behaviour expressed as either a stable node or a stable
focus (Table 7). This seems to be the behaviour of many cyclic
metamorphic reactions. If these systems also involve diffusion
of A and B then the system is defined in terms of reaction-
diffusion equations (such as those given in Eq. 28). Then,
subject to other conditions considered in Section 4.2,
stationary spatial patterns known as Turing instabilities can
form spontaneously in an otherwise homogeneous material.

(ii) Unstable behaviour expressed as an unstable focus, an unstable
node, a saddle point or a Hopf bifurcation (Table 7). The closed
ellipse in the phase portrait of a Hopf bifurcation in Table 7 is
known as a limit cycle.
4.2. Reactions with coupled diffusion: metamorphic differentiation

Up until now we have considered equations of the form Eq. (35)
where no diffusion is coupled to themineral reactions. If diffusion is
included as in Eqs. (27)e(29) then the possibility of spatial insta-
bilities arises. Of particular interest in structural geology is the
development of metamorphic differentiation which is a composi-
tional patterning developed in an initially homogeneous lithology.
This is expressed as a differentiated slaty cleavage, a schistosity or
gneissosity, developed with or without close association with
crenulation cleavage, or as a mineral lineation, or as a combination
of both. Bymineral lineationwemean elongate domainal structures
composed of high concentrations of a single mineral and do not
mean lineations defined by preferred orientations of inequant
mineral grains. Oneway inwhich such structures could formwould
be as Turing instabilities (Turing, 1952). Such instabilities consist of
the spontaneous development of spatial compositional patterns in
an otherwise homogeneous material and can comprise spot-like,
linear or planar patterns or combinations of all three. The five
conditions for a Turing instability to form in a two-fold coupled
mineral reaction system, together with the wave-number, kTuring,
that ultimately develops in an infinite domain are given by (Murray,
1989; Epstein and Pojman, 1998):

ðiÞ Tr ¼ F1 þ G2 < 0;
ðiiÞ D ¼ F1G2 � F2G1 > 0;
ðiiiÞ F1 is opposite in sign to G2;

ðivÞ DA
DB

> 1 for F1 < 0;

ðvÞ DBF1 þ DAG2 > 2
h
DADB

�
F1G2 � F2G1

�i12
> 0

(40)

The resulting wave-number is

kTuring ¼
�

2p

lTuring

�
¼
�
F1G2 � F2G1

DA=DB

�1
4

(41)

Thus important criteria for a Turing instability to form are that
the system be stable in the absence of diffusion, that one diffusion
coefficient be much larger than the other and that F1 be of opposite
sign to G2. We have seen that the simple set of linear networked
reactions defined by Eq. (39) is capable of fulfilling these condi-
tions. One can show that Tr for the cyclic reactions as written by
Carmichael (1969) and byWintsch et al. (2005) andWhitmeyer and
Wintsch (2005) are negative (stable) and that F1 for these reactions
has the same sign as G2. Thus spatial patterning is not possible in
these systems as they are expressed and without additional
coupling. An important additional requirement for such reactions is
that one diffusion coefficient is much smaller than the other and
this is the normal assumption inmetamorphism (Carmichael,1969)
where the diffusion of aluminium is taken to be much slower than
other elements such as Si, Na and so on.

4.3. Examples involving redox reactions

4.3.1. Autocatalytic reactions
Networked chemical reactions that involve changes in redox

state are particularly susceptible to instabilities (Epstein and Poj-
man, 1998). One reason for this seems to lie in that many redox
reactions can be expressed in an autocatalytic manner. Thus the
oxidation of Fe2þ can be written:

Fe2þ þ 2Fe3þ/3Fe3þ þ electron� (42)
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We take an example where a mineral, A, reacts to produce
another mineral, B, A/ B and in the process A dissolves in an inter-
granular fluid to contribute Fe2þ to that fluid. An example could be
biotite reacting to produce garnet. A set of networked reactions that
describes the redox part of the reaction is:

Reaction of A to produce Fe2þ : A/
k01 Fe2þ (43a)

Non� catalytic step : Fe2þ/
k02 Fe3þ (43b)

Autocatalytic step : Fe2þ þ 2Fe3þ/
k03 3Fe3þ (43c)

Production of B from Fe3þ: Fe3þ/
k04 B (43d)

where the k0i are the reaction rates for the four reactions.
The set of equations that describes the coupling between these

reactions is:

vA
vt ¼ �k1A

v
h
Fe2þ

i
vt

¼ k1A� k2
h
Fe2þ

i
� k3

h
Fe2þ

ih
Fe3þ

i2
v
h
Fe3þ

i
vt

¼ k2
h
Fe2þ

i
þ k3

h
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ih
Fe3þ

i2�k4
h
Fe3þ

i
vB
vt ¼ k4

h
Fe3þ

i
(44)
Fig. 8. Behaviour of the autocatalytic reaction (43). (a) Concentrations of Fe2þ, Fe3þ, the reac
and B have been divided by 200. Equilibrium conditions do not develop until a dimensionles
(44) are k1 ¼ 0.002, k2 ¼ 0.08, k3 ¼ 1.0, k4 ¼ 1.0 so that the dissolution of A is much slower th
(a). k1 ¼ 0.05, k2 ¼ 0.08, k3 ¼ 1.0, k4 ¼ 1.0. Regions are marked that correspond to compositio
details of the calculations involved see Boyce and DiPrima (2005). (After Ord and Hobbs, 2
where the square brackets denote the concentration of the relevant
redox species and the ki are functions of the k0i and of the concen-
trations of any other components that may be involved in the
reactants. Solutions to these equations are shown in Fig. 8(aec)
where the system oscillates in time with respect to the concen-
tration of Fe2þ and Fe3þ in solution with the resulting composi-
tional zonal sequence within a growing grain illustrated in Fig. 8
(c,d).

4.3.2. A second example with redox changes
Fisher and Lasaga (1981) consider a classical networked reaction

(the Brusselator) described in the context of redox reactions by the
coupled reaction-diffusion equations:

d
h
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i
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v2
h
Fe3þ

i
vx2
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h
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i2h
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h
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i2h
Fe2þ

i
(45)

Here the ½Fe3þ�2½Fe2þ� term arises from autocatalytic reactions of
the form Eq. (43c) and so could be relevant in many networked
metamorphic reactions. In fact the reactions described by Eq. (45)
are similar to Eq. (43) except that both the reactant and the product
in Eq. (45) involve Fe3þ (Epstein and Pojman, 1998, p. 39). The
networked series of reactions which result in the net reaction
A / E with intermediaries B and D are:
tant A and the product B with dimensionless time. Notice that the concentrations of A
s time of about 3000. (b) Zoom into part of (a) showing detail. The parameters from Eq.
an the formation of B. (c) The behaviour of Eq. (43) but with A dissolving faster than in
nal zonal patterns that would develop in growing porphyroblasts illustrated in (d). For
011).
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Reaction of A to produce Fe3þ : A/
k01 Fe3þ
0

Non� catalytic step involving B and D : Bþ Fe3þ/
k2 Fe2þ þ D

0

Autocatalytic step : Fe2þ þ 2Fe3þ/
k3 3Fe3þ

0

(46)
Production of E from Fe3þ: Fe3þ/
k4 E

The reader is referred to Fisher and Lasaga (1981) who treat this
system in detail. In particular they derive the conditions under
which compositional differentiation will arise and the expression
for the rate of growth of such layering from an initial compositional
distribution that consists of small perturbations, g(x), above
a background steady state composition, co, defined by a Fourier
series:

gðxÞ ¼ co þ
XN
n¼1

ansin
�npx

L

�
(47)

In Eq. (47) L is some length scale associated with the system and
an is the initial compositional fluctuation, around a background
composition co, associated with the nth wave-number. The spatial
evolution of the composition, c, of the systemwith time is given by

cðx; tÞ ¼ co þ
XN
n¼1

ansin
�npx

L

�
expðwntÞ (48)

where wn is the amplification of the nth mode and is discussed by
Fisher and Lasaga (1981). The two dimensional evolution of
a system described by Eq. (48) using values of wn derived by Fisher
and Lasaga (1981) is shown in Fig. 9(a,b). Fig. 9(c) shows the result
of growing the spatial pattern in Fig. 9(b) during a homogeneous
Fig. 9. The behaviour of the Fisher and Lasaga (1981) Brusselator system as expressed by E
represent fluctuations of 10�2 about an initial background of Fe2þ concentration; red hi
dimensionless time ¼ 1.0 for the conditions, parameters and dimensionless units proposed
horizontal shortening of 80%. The horizontal lines are passive markers. Such a structure co
Lasaga (1981) Brusselator system for a ¼ 2, b ¼ 4 , DA ¼ DB ¼ 0 in Eq. (45). In this case th
shortening normal to the layering. The material has been treated as
a Maxwell solid with shortening of 80%.

The system of equations in (45) is also capable of undergoing
oscillations in time so that as the system passes across the condi-
tion Tr ¼ 0 the system passes from one characterised by the Turing
instabilities shown in Fig. 9(b) through a Hopf bifurcation to one
characterised by oscillations in time as shown in Fig. 9(d). The
oscillations in this case comprise a series of bursts and would
produce the spiked zonal patterns observed in the concentrations
of Ca and Mg in some garnets (Chernoff and Carlson, 1997).
4.4. Reaction-diffusion processes with deformation and
heterogeneity

There are ways however, other than the classical Turing insta-
bility, in which metamorphic differentiation may develop. Most of
the vast literature on instability in networked chemical systems
involves homogeneous systems. Ortoleva and Ross (1973, 1974)
consider systems where heterogeneities exist. Such systems are of
fundamental importance in metamorphic systems where hetero-
geneities comprised of localised reaction sites, localised dissipation
arising from heterogeneous deformation and gradients in chemical
potential are hallmarks of the processes that operate. Eq. (28) is
replaced by equations of the form

du1
dt

¼ D1
v2u1
vx2

þ Fðu1;u2Þ þ 31Eðx;u1;u2Þ
du2
dt

¼ D2
v2u2
vx2

þ Gðu1;u2Þ þ 32Hðx;u1;u2Þ
(49)

where now F and G are non-linear functions of composition rep-
resenting homogeneous reactions and E and H are non-linear
qs. (45) and (46). (a) Initial random spatial distribution of Fe2þ and Fe3þ. The colours
gh, blue low. (b) Spatial distribution of Fe2þ (light green high Fe2þ) and Fe3þ after
by Fisher and Lasaga (1981). (c) Effect of growing the spatial instability in (b) during

uld represent many differentiated slaty cleavages. (d) The behaviour of the Fisher and
e material remains homogeneous spatially but oscillates in time.
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functions of composition and of space arising from heterogeneities
in reaction sites and/or deformation or from gradients in chemical
potential; 31, 32 measure the magnitude of the effect of E and H.
Ortoleva and Ross (1974) show that a wide range of unstable
behaviour can arise from Eq. (49) including oscillating reactions but
also travelling compositional waves including spirals. In particular
spatially static compositional differentiation patterns can develop
even in systems where the diffusion coefficients, D1 and D2, are
equal. The approach of Ortoleva and Ross (1973, 1974) for hetero-
geneous systems means that even if one can demonstrate that
a metamorphic networked reaction system is stable (that is, Tr< 0),
then the presence of heterogeneities will almost certainly induce
some form of instability so that compositionally zoned meta-
morphic grains and some form of compositional differentiation
should be common-place in metamorphic rocks as of course they
are.

This work is the basis for a series of papers by Ortoleva and co-
workers (Dewars and Ortoleva, 1990, and Ortoleva et al., 1982,
1987a, b). In particular, Ortoleva et al. (1982) show that even the
simple uncoupled reactions:

A/X

B/Y

can become unstable and produce spatial patterns when coupled
with deformation effects that influence the concentration of
X and Y.

As an example, the simple quartzemuscovite system has been
analysed in terms of equations of the form of Eq. (35). Consider the
networked set of reactions given by:

Quartz#SiO2 in solution
Muscovite#3Quartzþ Kþ þ H2Oþ AlO3�

One can readily confirm (Hobbs and Ord, 2010a) that for such
a network Tr is always negative so the system is always stable but F1
always has the same sign as G2 and hence a classical Turing insta-
bility can never form. Ortoleva and co-workers have shown that
this system can develop spatial differentiation by a number of
mechanisms but each mechanism ultimately depends on the
approach taken in Ortoleva and Ross (1974). Dewars and Ortoleva
(1989) develop a model whereby the mineral reactions are coupled
to deformation via dependence of the chemical potential of each
mineral phase upon the mineral composition of its surroundings;
this is referred to as a texture dependent chemical potential. The
dependence arises because for a given imposed far field stress, the
mean stress on a grain is dependent upon the strength of the
surroundingmaterial. Thus a grain of quartz will have a largermean
stress imposed upon it if it is surrounded by quartz-rich material
(strong) rather than mica-rich material (weak). The dependence of
the chemical potential of a stressed solid on themean stress (Kamb,
1959, 1961) then results in a texture dependent chemical potential.
The dissolution or growth of the grain is expressed as a stress
dependent function of the chemical potential. There is a positive
feedback between the texture dependent chemical potential and
the texture so that gradients in this chemical potential not only
drive migration of material but reinforce further dissolution of
stressed grains in domains rich in strong minerals or growth
(precipitation) of the same mineral grains where surrounded by
weaker minerals (see Fig. 10 where the feedback arrows are
particularly important). An important additional component of
such models is that the growth of grains is also dependent on the
texture and/or the stress via relations of the form
vru
vt

¼ Fðu; vÞ � GðQ;sÞ

where ru is the radius of a grain composed of the chemical phase, u,
F(u,v) is a function that expresses the kinetics of formation of u in
competition with v, G is a function of the texture, Q, and the stress
s as discussed by Ortoleva (1994). This equation says that the
increase in the radius of a grain is governed by the rate at which u is
produced minus the rate at which texture and stress influence
growth rate. Thus the model illustrated in Fig. 10 becomes a clas-
sical diffusion-reaction-deformation model Eq. (29) where there is
a continuous competition between texture/stress driven dissolu-
tion and diffusion and texture/stress driven grain growth (repre-
sented by the feedback arrows in Fig. 10). Ortoleva (1994, Fig. 11-2)
illustrates that for critical parameters such a system can develop
spatial patterning.

All of the processes discussed in the Ortoleva model result in
metamorphic differentiation at the grain scale so that the differ-
entiation documented by Whitmeyer and Wintsch (2005) and by
Wintsch et al. (2005) are at the scale expected of the Ortoleva type
of process. An additional but related process for developing meta-
morphic differentiation arises through the reaction-diffusion-
deformation equations expressed by Eqs. (27) and (29). Examples
are given in Hobbs and Ord (2010a). Although the processes dis-
cussed by Ortoleva and co-workers represent a specific form of Eqs.
(27) and (29), these equations are more general and point to the
development of metamorphic differentiation at the scale of
heterogeneities in the deformation but still presumably limited by
the scale of the transport mechanisms involved. Thus the classical
metamorphic differentiation associated with crenulation cleavages
(Fig.11) would seem to be an example of this more general coupling
but presumably in an open system where quartz can leave the
system (see Hobbs and Ord, 2010a).

The coupling of deformation to reaction-diffusion equations
leads to relationships (Hobbs and Ord, 2010a) that are of the same
form as the OrtolevaeRoss equations (49) for a heterogeneous
reacting system. The physical significance of this coupling can be
seen from Fig. 12 that shows how a stable reacting system can
become unstable due to relative displacement of null-clines by
compositional dependent dissipation.
4.5. Reaction processes with coupled fluid flow

The coupling of fluid flow to networked chemical reaction
systems can induce instability in the system in exactly the same
manner as does coupling mass diffusion and has been explored by
Ortoleva et al. (1987a,b) and by Rusinov and Zhukov (2000, 2008)
who write a set of equations that couple chemical reactions to fluid
flow in the form of reaction-transport equations:

v
�
4cfluidi þ csolidi

�
vt

¼ vJi
vx

þ Fi
�
cK
�

(50)

where 4 is the porosity, cfluidi and csolidi are the dimensionless
concentrations (volume% or mass%) of the component i in the fluid
and rock respectively, x is a spatial coordinate and Fi is a function of
the dimensionless concentrations of all the K chemical compo-
nents, cK, and expresses the kinetics of the ith reaction. Ji is the flux
of the ith component and is given by

Ji ¼ jcfluidi � Di

 
vcfluidi
vx

!
(51)

and so includes components arising from both infiltration due to
the fluid flux, j, and diffusion arising from the diffusivity, Di. Eqs.



Fig. 10. The positive reinforcement of grain growth and dissolution of a weak grain A, embedded in a mixture of A and B where B is strong. The reinforcement arises from a texture
dependent chemical potential in a deforming material (After Ortoleva et al. 1987a). Also portrayed is a texture or stress dependence of the dissolution/precipitation rates. Without
this dependence the system moves towards homogenisation. Ortoleva et al. (1987a) and Ortoleva (1994) shows that there are regions of a phase space defined by the competition
between diffusion and the texture/stress dependent growth rates that enable metamorphic differentiation to grow.
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(50) and (51) combined have the same form as the reaction-diffu-
sion equations (28).

Rusinov et al. (1994) and Rusinov and Zhukov (2000, 2008)
consider reactions, involving wollastonite and hedenbergite, which
they write in a form that involves the autocatalytic oxida-
tionereduction step

Fe2þ þ 2Fe3þ#3Fe3þ þ electron� (52)

This systemwith coupling to fluid flow is unstable and produces
a limit cycle for the concentrations of Fe2þ and Fe3þ in solution and
an associated spatial patterning of wollastonite and hedenbergite
as shown in Fig. 13. A similar study involving redox reactions is that
of Ortoleva et al. (1986).

If the complete reaction-infiltration coupled problem is solved
then the system becomes unstable in time and space and a number
of compositional travelling wave structures develop. The nature of
these instabilities is shown in Fig.14 and corresponds to a travelling
front in Fig. 14(a and b), oscillating but decaying travelling waves in
Fig. 14(c and d) and a limit cycle representing sustained oscillations
Fig. 11. Metamorphic differentiation in quartzemuscovite schists associated with the deve
New Mexico, USA). The scale is identical in both images. These kinds of structures presum
in Fig. 14(e and f). These instabilities only develop for an infiltration
velocity that is below a critical value set by the reaction kinetics
(Rusinov and Zhukov, 2008) and so would not develop in rocks of
highpermeability. The observation that such infiltration instabilities
only develop for small infiltration velocities opens the possibility
that such instabilitiesmaybe important inmanymetamorphic rocks
where the permeability is presumably always small but infiltration,
or at least local transport, of H2O is commonly postulated (Wintsch
et al. 2005).

The possibility of coupling to other species in solution involving
multivalent elements such as manganese, titanium and so on is
suggested by Rusinov et al. (1994) through relations of the form

Fe2þ þMn3þ%Fe3þ þMn2þ (53)

which implies that the concentrations of Mn2þ and Mn3þ can vary
in the same manner as Fe2þ and Fe3þ shown in Figs. 8, 9, 13 and 14.
This becomes an important consideration when one considers
metamorphic compositional zoning. Rusinov et al. (2006) and
Rusinov and Zhukov (2008) also show that fractal and multifractal
lopment of crenulation cleavages (photomicrographs from Ron Vernon; Picuris Range,
ably involve open systems where SiO2 can be removed from the system.



Fig. 13. Instabilities in the wollastonite-hedengergite system. (a) Limit cycle for Fe2þ and Fe3þ in solution. (b) The limit cycle of (a) as a function of dimensionless distance, x. (c) The
precipitation of hedenbergite in a matrix of wollastonite as a function of dimensionless distance. After Rusinov and Zhukov (2000). The dimensionless distance x is defined by
Rusinov and Zhukov (2000).

Fig. 12. (AeB) compositional phase space showing progression of system behaviour with progressive changes in a dissipative process that effects reaction rates. In this diagram the
effect on the reaction rate that produces A (the F null-cline) is large compared to the effect on B (the G null-cline). (a) Intersection of the F and G null-clines results in temporal stable
behaviour but such that Turing instabilities are possible. (b) The dissipative process has moved the F null-cline relative to the G null-cline such that now a Hopf bifurcation occurs.
(c) Further relative movement of the two null-clines results in oscillatory temporal behaviour. (d) Summary of a system where the proportion of total mechanical dissipation
partitioned to the production of A, cAsij _3

dissipative
ij , moves the F null-cline relative to the G null-cline from an intersection at P1 (unstable in time) to P2 (Hopf bifurcation) to P3 (Turing

instability).
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fabrics can develop through coupling reactive-diffusion-infiltration
processes and propose that whether the fabric is fractal or multi-
fractal may be diagnostic of whether infiltration dominates over
diffusive processes.

4.6. The relationship of microfabric elements to strain and
deformation-rate

A common assertion is that fold axes form normal to a principal
axis of strain and that the axial planes of folds are parallel to
a principal plane of strain. This assertion is not supported by
analytical models of fold development. An analytical finite ampli-
tude analysis of fold development in 3 dimensions is given by
Mühlhaus et al. (1998) who show that for a general coaxial
Fig. 14. Phase portraits for Fe2þ and Fe3þ in solution for various combinations of null-clin
conditions: redox kinetics only for f, redox kinetics combined with mass exchange kinetics betwe
w. (a) and (b): A stable focus corresponding to a single travelling front in solution. (c) and (d)
of oscillations. (e) and (f): An unstable focus evolving into a limit cycle corresponding to a
deformation history the factor that governs the orientation of the
fold axis is the deformation-rate tensor. The dispersion function
that relates the growth rate of a particular wave-number (Fig. 15)
has a strong and sharp maximum in the plane parallel to the axis of
maximum deformation-rate, D1. The growth rate decreases rapidly
away from this sharp maximum in all directions although there is
a weaker, broader maximum parallel to D2. The wave vector cor-
responding to the sharpmaximum is parallel to the principal axis of
deformation-rate, D1.

This relationship holds also for non-coaxial deformation histo-
ries so that as a general statement one expects fold axes to initiate
normal to a principal axis of deformation-rate and not of strain.
Moreover the analysis of Mühlhaus et al. (1998) is also true for thick
plates so that these results show that the axial planes of folds form
es. f, g and w are the null-clines for a reduced component in the system, under the
en solution and solid for g, andmass exchange kinetics between solution and solid only for
: Stable focus corresponding to a travelling wave in solution with decreasing amplitudes
travelling front with sustained oscillations. After Rusinov and Zhukov (2000).



Fig. 16. Relationship of the principal axis of deformation-rate to the principal axis of
strain in a simple shearing deformation history.
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parallel to a principal plane of deformation-rate. Such a conclusion
also follows from the small deformation analysis of Johnson and
Fletcher (1994a, b) corresponding to the initiation of folding. This of
course is at odds with the widely acclaimed doctrine (Ramsay,
1967) that proposes the axial plane of folds to be a principal plane
of strain. For a coaxial strain-history the principal planes of strain
and of deformation-rate remain coincident so that the Ramsay
proposition is true but for a non-coaxial deformation history this is
no longer true. For instance, in a simple shearing deformation
history the principal planes of deformation-rate remain fixed at 45	

to the shearing plane whilst the principal planes of strain rotate
towards the shearing plane (Fig. 16).

In a general argument, Ortoleva et al. (1982) show that the
metamorphic layering produced by the model shown in Fig. 10
forms normal to a principal axis of stress. We commonly assume
that the constitutive relations pertinent to deformed rocks are
coaxial (that is, the stress tensor always remains parallel to the
deformation-rate tensor). Thus a common form of Eq. (8) is

s ¼ A D
�
J2
Jo2

�ð1�N
2N Þ

exp
�
Q
RT

�
(54)

where for rocks, N is a number between 1 and about 8, A is
a material constant with dimensions of viscosity, Q is an activation
enthalpy and R is the gas constant. J2 is the second invariant of the
stretching tensor and Jo2 is this same quantity in a reference state.
Eq. (54) says that the principal axes of stress remain parallel to the
principal axes of deformation rate throughout the deformation
history.

The argument of Ortoleva et al. (1982) means that metamorphic
layering forms parallel to a principal plane of deformation-rate and
not a principal plane of strain. Thus we interpret these results to
mean that the metamorphic layering that commonly develops
parallel to the axial planes of folds at the microscale is parallel to
a principal plane of deformation-rate. This statement would also be
true for slaty cleavage formed by differentiation at the microscale.

Eq. (27) also shows that the general influence of deformation on
the metamorphic differentiation process is controlled by the sij _3ij
Fig. 15. Analytical dispersion relation linking growth rate, u, to the wave-number ki ¼
2p
li

for a plane straining history of single layer folding with the maximum principal
deformation-rate D1. Materials are Newtonian viscous (after Mühlhaus et al., 1998). The
sharp maxima correspond to a wave vector parallel to D1 and the smaller maxima
correspond to a broader distribution of wavelengths with variable wavelength and
with a wave vector parallel to D2.
term. Thus the geometrical aspects of the fabric that forms reflect
the symmetry of the ellipsoid representing the deformation-rate
tensor. If the stretching history is a plane stretching, for instance,
then planar differentiation will develop with the plane of differ-
entiation parallel to a principal plane of deformation-rate (or
equivalently, stress). If the stretching history is a simple progressive
elongation then the fabric that develops is a mineral lineation
parallel to a principal axis of deformation-rate. The differentiation
illustrated in Fig. 17 is interpreted as forming parallel to a principal
plane of deformation-rate and (for a non-coaxial deformation
history) at an angle to a principal plane of strain so that shear
displacements parallel to themetamorphic layering are permissible
as part of the overall kinematics as illustrated by shear displace-
ments of the bedding in the central part of Fig. 17. We emphasise
that only for a coaxial deformation history do these fabric elements
form parallel to a principal plane or axis of strain. However such
a relationship is incidental; the control on the orientation and
geometrical character of the fabric element is the deformation-rate
tensor no matter if the deformation history is coaxial or non-
coaxial. This is of course exactly what Sander (1911) said: The
symmetry of the fabric reflects the symmetry of the movement picture
(kinematics). This issue is revisited in Sections 5.3 and 5.4.

The above discussion does not preclude some foliations (or
lineations) forming parallel to a principal plane (or axis) of strain by
distortion of initial more or less equant objects such as clasts,
mineral grains or compositional heterogeneities. This form of fabric
element tracks the symmetry of the strain ellipsoid precisely but it
is fundamental that a distinction be made between fabric elements
that form in response to thermodynamic coupling through the
deformation-rate tensor and those that are simply a distortion of
other fabric elements in the strain field. Of course one expects both
types of fabric elements to form synchronously in suitable rocks
although traditional interpretations of such occurrences might
commonly be mistaken as overprinting relations.

4.7. Minimal surfaces

In the following the term interface applies to the boundary
between domains of different mineral composition in a deformed
rock whereas the term surface means a mathematical entity that is
parallel to an interface or is defined solely by some mathematical
expression.

Mecke (1996, 1997), De Wit et al. (1992, 1997), Leppanen et al.
(2004), Alber et al. (2005) and Glimm and Hentschel (2008) have



Fig. 17. Differentiated layering (red line) at Rhoscolyn. Anglesey, Wales, UK. Note (b) the shear displacements on the differentiated foliation clearly marked by displacements of
bedding (green in a) in the central part of the figure. In outcrop it is observed that this differentiated layering is slightly oblique to the fold axis.

Table 8
Mean and Gaussian curvatures for various regular surfaces.

Surface Mean Curvature,
m�1

Gaussian
Curvature,
m�2

þ1 þ1

þ0.5 0

0 0

0 �1
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pointed out that the spatial segregation of phases resulting from
Turing instabilities forms interfaces separating the segregations
that approximate minimal surfaces, a minimal surface being one
where the mean curvature is zero. The mean curvature, H with
dimensions [per unit length], at any point is defined as
H ¼ 0:5ð1r1 þ 1

r2
Þ where 1

r1
and 1

r2
are the principal curvatures of the

surface at that point (Lopez-Barron and Macosko, 2009). In addi-
tion, the types of interfaces that develop for reaction-diffusion
equations are saddle shaped or hyperbolic and are characterised by
values of the Gaussian curvature K, with dimensions [per unit
length2], that are less than zero (hyperbolic) or zero (planar). K is
given by K ¼ 1

r1r2
. H and K are useful in discriminating between

various types of surfaces (Table 8). Aksimentiev et al. (2002) and
Lopez-Barron and Macosko (2009) show that during the annealing
of immiscible polymer blends the microstructures can evolve in
both self-similar and non self-similar manners and that the
evolution along various paths is represented in the shapes and
standard deviations of plots of the mean and Gaussian curvatures.
Paths towards minimum energy configurations are characterised
by decreases in the standard deviations of both H and K, and
a transition in the mean value of K ranging from zero to a distri-
bution with skewness towards negative values indicating a transi-
tion to a dominance of hyperbolic or saddle shaped topologies.

In metamorphic rocks quartz-rich and mica-rich domains
commonly interweave in the system whilst individual grains of
other phases such as garnet and feldspar are embedded in this
topology. An interweaved set of interfaces separates these
domains; in S-tectonites these are flattened lozenges whilst in L-
tectonites these domains are strongly elongate and perhaps
approximate flat elongate ellipsoids. A typical example of such
domainal structure is the “millipede” structure of Bell (1981) in
three dimensions. Reaction-diffusion theory proposes that the
topology of this interweaved network is or evolves towards that of
a minimal surface.

The outcome of the analysis in Sections 4.1e4.5 is that spatial
patterning is to be expected in most if not all deforming-reacting
mineral systems leading to a variety of forms of metamorphic
differentiation such as layering in gneisses, mineral lineations and
differentiated crenulation cleavages (Hobbs and Ord, 2010a).

As part of this argument a number of authors including in
particular De Wit et al. (1997), Leppanen et al. (2004), Alber et al.
(2005) and Glimm and Hentschel (2008) have pointed out that the
iso-concentration interfaces produced by reaction-diffusion equa-
tions are minimal surfaces or close to minimal surfaces. In partic-
ular, Alber et al. (2005) and Glimm and Hentschel (2008) have
shown that the types of minimal surfaces (or surfaces close to
minimal) that develop from reaction-diffusion equations are rep-
resented parametrically by

u ¼ s1cosxþ s2cosyþ s3cosz (55)

where u is a parameter; different values of u result in different
surfaces. These surfaces are not strictly minimal surfaces but
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approximate minimal surfaces. Alber et al. (2005) show that there
are three possible cases:

(i) s1 s 0, s2 ¼ s3 ¼ 0 representing sheet or lamellae structures
which would be represented in rocks as foliation planes,

(ii) js1j ¼ js2js0; s3 ¼ 0 representing cylindrical-like structures
which would be represented in rocks as mineral lineations
and,

(iii) js1j ¼ js2j ¼ js3js0 representing undulating surfaces that
can encompass a sphere or “nodule” which would be repre-
sented in rocks as foliation surfaces encompassing porphyro-
blasts or lozenge shaped regions such as lithons. The surface
s1cosxþ s2cosyþ s3cosz ¼ 1 is shown in Fig. 18(a) together
with histograms of the mean, (b), and Gaussian, (c), curvatures
across the surface. The case s1cosxþ s2cosyþ s3cosz ¼ u is
very close to a Schwarz P-surface which is a triply periodic
minimal surface (Aksimentiev et al. 2002) although only part
of the surface is shown in Fig. 18(a); for the complete P-surface
see Aksimentiev et al. (2002). These types of structures are
common in polymers (Aksimentiev et al. 2002; Lopez-Barron
and Macosko, 2009).

Glimm and Hentschel (2008) show that curved interfaces such
as that shown in Fig. 18(a) represent conditions for maximum
diffusive flux normal to the surface if there are gradients in the
chemical field (that is, gradients in the rates of production defined
by the functions F and G in Eq. 32) and are surfaces of maximum
diffusive flux if the chemical field is constant. Gabrielli (2009)
shows that minimal surfaces represent conditions for minimising
stress concentrations in a loaded aggregate. Thus if the meta-
morphically differentiated foliations and/or lineations that evolve
as interfaces between quartz and biotite concentrations in
a quartzebiotite schist develop as instabilities arising from reac-
tion-diffusion-deformation reactions then one expects these
interfaces to define or approximate minimal surfaces. To date there
has been relatively little study of such interfaces in metamorphic
rocks but examples perhaps are the 3D images generated in ana-
texite by Brown et al. (1999) and in a garnetestaurolite schist by
Ketcham and Carlson (2001). The opportunity exists to analyse the
microstructures in metamorphic rocks using the concepts devel-
oped by the above workers and by Aksimentiev et al. (2002). Fig. 18
(d) shows one of the sets of interfaces described by Bell and Bruce
(2006, 2007) for the shapes of foliation surfaces in porphyroblastic
schists while Fig.18(e,f) show histograms of the mean and Gaussian
curvatures for that surface (Hobbs and Ord, 2010a). The Bell and
Bruce interface is similar to the surface shown in Fig. 18(a) that
results from reaction-diffusion equations and is also similar to the
computer-simulated interfaces that arise in the lamellar phase of
surfactant systems (Holyst, 2005). The observations that, for the
Bell and Bruce interface, the mean value of H is zero, the standard
deviation of H is less than that for the theoretical surfaces of Glimm
and Hentschel (2008) and K is negative supports the suggestion
that the Bell and Bruce interface is part of an evolution towards
a minimal surface. Demonstration of the widespread existence of
interfaces defining foliations and lineations that approach minimal
surfaces would be a good test of the proposition that the micro-
structures developed in deformed metamorphic rocks form by
reaction-diffusion processes.

4.8. Compositional zoning

Ortoleva and Ross (1973, 1974) discuss the development of
wave-like instabilities in chemically reacting systems when
heterogeneities exist in the distribution of reaction sites. Depend-
ing on the nature of the equivalent reactions in a homogeneous
situation, a number of types of chemical waves can originate at the
individual reaction sites. These include planar waves of concen-
tration, oscillations (increasing, decreasing or constant in ampli-
tude) of concentration and spiral compositional waves. These
waves are not material waves and travel with a phase velocity that
is invariably different to the transfer of material by diffusion or
advection alone and that is a function of the non-linear kinetics of
the chemical reactions. This means that in some situations the
influence of a wave may be restricted at any instant to a small part
of the systemwhereas in other situations the influence of the wave
may extend throughout the system. In particular spiral composi-
tional waves are restricted to the reaction site. A growing grain
interface that incorporates chemical components from these waves
will preserve a record of the nature of these waves: a dominantly
monotonic change in concentration arising from planar waves,
oscillatory changes in concentration arising from oscillatory waves
and spiral shaped distributions arising from locally developed
spiral waves.

A number of different types of compositional zoning within
porphyroblasts have been reported in the literature (Fig. 19). A
review of observations up until 2004 is presented by Vernon
(2004). Three types are: (i) more or less monotonic increases or
decreases in the concentration of an element from the inferred site
of nucleation of a porphyroblast towards the rim of the grain with
some discontinuities in the case of Ca and Mg in particular
(Chernoff and Carlson, 1997); (ii) oscillatory zoning superimposed
on variable trends in concentration of an element towards the rim
(Schumacher et al., 1999; Yang and Rivers, 2002; Meth and Carlson,
2005) and (iii) spiral zoning of the concentration of an element
(Yang and Rivers, 2001). Note that in this latter case we are
specifically referring to spiral compositional zoning and not to the
spiral shaped distribution of inclusions common in garnets. In most
cases the zoning is interpreted in terms of variations in the flux of
nutrients towards the growing porphyroblast either by diffusion or
advection in a fluid. The classical interpretation in terms of varia-
tions in the supply of nutrients remains if one adopts the Ortoleva
and Ross approach but the origin of these variations is now
proposed as specifically arising from competition in the production
and consumption of nutrients in nearby unstable networked
chemical reactions. The spatial scale at which these compositional
waves occur is controlled by the phase velocity of the chemical
waves and it may therefore be dangerous to base arguments of the
scale of equilibration in such situations on chemical diffusivities
alone. An example of compositional zoning in a growing porphyr-
oblast is proposed in Fig. 8.

4.9. Dislocation interactions and subgrain-size

4.9.1. Dislocation patterns arising from reaction-diffusion equations
Walgraef and Aifantis (1985a, b, c) and Aifantis (1986) have

applied the concepts of pattern formation arising from reaction-
diffusion equations to the development of localised deformation
patterns. The results of these latter analyses indicate that such
localisation should develop both as temporal oscillations in defor-
mation intensity (a Hopf instability) and spatial fluctuations in
deformation intensity (a Turing instability). Both of these kinds of
instabilities are observed in deforming metals (Aifantis, 1987). The
approach is motivated by work on dislocation dynamics (Walgraef
and Aifantis, 1985a, b, c; Aifantis, 1986; Pontes et al., 2006; Zbib
et al., 1996; Shizawa and Zbib, 1999; Shizawa et al., 2001). Such an
approach suggests that dislocation pattern formation results from
interactions during deformation between different dislocation
populations, a process that tends to localise dislocation densities,
and diffusion which tends to homogenise dislocation densities.
Patterns develop when a critical stress is reached corresponding to



Fig. 18. Surfaces resulting from reaction-diffusion systems and natural interfaces. (a) The surface u ¼ cos(x) þ cos(y) þ cos(z) predicted as arising from reaction-diffusion equations
by Glimm and Hentschel (2008) shaded according to the mean curvature. Red is high positive mean curvature and blue is negative. (b) Histogram of the values of mean curvature for
the surface in (a). (c) Histogram of the values of Gaussian curvature for the surface in (a). (d) A Bell and Bruce interface shaded according to mean curvature. Red is high positive
mean curvature and blue is negative. (e) Histogram of the values of mean curvature for the surface in (d). (f) Histogram of the values of Gaussian curvature for the surface in (d). Note
that many of the values in the tails of the histograms arise from artefacts that we have not removed, at the edges of the surfaces. The vertical scale in the histograms is the number of
nodes, normalised to 1, on the triangulated surface that have a given curvature. Images produced using Meshlab (MeshLab, Visual Computing Lab e ISTI e CNR, http://meshlab.
sourceforge.net/).
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a balance between these two competing processes. In the original
version of this model (Walgraef and Aifantis, 1985a) two pop-
ulations of dislocations were considered: mobile and less mobile
populations with instantaneous densities rm and rlm with units
mþ1 m�3 The four processes that contribute to the total dislocation
density in a one dimensional model are proposed as (Schiller and
Walgraef, 1988):

(i) Dislocation diffusion: which contributes terms such as Dk
v2rk
vx2 to

the total rate of change of the density of the kth population
where Dk is the diffusion coefficient for the kth population
density and x is a spatial coordinate. Note that it is the
diffusion of the density of the dislocation population that is
referred to here and not the diffusion of the population itself.
As in the models for the development of classical Turing
instabilities it is important that the diffusion coefficient of
densities of mobile dislocations is much larger than that of less
mobile dislocations in order for dislocation patterns to form.

(ii) Dislocation interaction and pinning: leading to a non-linear
source term in the rate of change of less mobile dislocations
and a corresponding sink term in that for mobile dislocations.
In the original model the source term is a quadratic,þ6rmr

2
lm ,

where6 is the rate for this process with units m4 s�1. However
the important point is that this term is non-linear so more

http://meshlab.sourceforge.net/
http://meshlab.sourceforge.net/


Fig. 19. (a) Back-scattered electron image of a garnet in a metapelite showing spiral
compositionally zoned fabric, a white core due to high Y concentration, and small
white rectangular inclusions of ilmenite (from Yang and Rivers, 2001). Summary of
compositional zoning relationships from Yang and Rivers (2001, 2002). (b) and (c)
Monotonic decreases in composition as would arise from the propagation of planar
compositional waves. (d) and (e) Patterns that would develop from behaviour in Fig. 9
(d). (f) Oscillatory pattern that would arise from behaviour in Fig. 8. (g) Spiral pattern
that would arise from spiral compositional wave of Ortoleva and Ross (1974).
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complicated interaction/pinning processes leading to higher
order terms lead to the same kinds of results (Schiller and
Walgraef, 1988; Pontes et al., 2006).

(iii) Dislocation generation: by some mechanism such as Frank-
Read sources or the like that adds a rate term g(rlm) into the
balance equation for less mobile dislocations, the assumption
being that all newly generated dislocations are immediately
pinned.

(iv) Dislocation liberation: which adds a source term brlm to the
balance equation for mobile dislocations and a corresponding
sink term for less mobile dislocations.
The above discussion indicates that the overall evolution of
dislocation arrays is described by two coupled reaction-diffusion
equations which express the relationships and coupling between
diffusion, generation, annihilation and pinning of dislocations:

vrlm
vt

¼ Dlm
v2rlm
vx2

þ gðrlmÞ � brlm þ6rmr
2
lm (56)

vrm
vt

¼ Dm
v2rm
vx2

þ brlm �6rmr
2
lm (57)

This is the set of reaction-diffusion equations introduced by
Walgraef and Aifantis (1985a) and has been intensively studied
over the past 25 years. One notes that Eqs. (56) and (57) are
precisely those of the Fisher and Lasaga (1981) Brusselator reaction
discussed in Section 4.3. In particular one can confirm that this
coupled set of equations has the following properties (see Eq. (40)
which are the conditions for a Turing instability to develop):

� The homogeneous, steady state of the system is defined by

g
�
rolm
� ¼ 0 and rom ¼ b

6rolm
(58)

� Instability represented by temporal oscillations (a Hopf insta-
bility) of the dislocation densities occurs when

b ¼ bHopf ¼ aþ6
�
rolm
�2 (59)

where a is the rate of change of the initial density of less mobile
dislocations, roim.

� An instability represented by spatial patterning (a Turing
instability) occurs when the stress becomes high enough that

b ¼ bTuring ¼
�
a1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6rolmDlm=Dm

q �2
(60)

� The wave vector for such spatial patterning is from Eq. (41)

qTuring ¼ 2p
lTuring

¼
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�
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�2
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where lTuring is the wavelength of the patterning.

� The Turing instability is reached before the Hopf instability if
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Thus the analysis indicates that an initial homogeneous distri-
bution of dislocations will spontaneously develop into a spatial
pattern whose wavelength depends on the diffusion coefficients of
the densities of the two families of dislocations, the rates of
generation (a) and of interaction ð6Þ of dislocations, and the initial
density of less mobile dislocations ðr0lmÞ.

This discussion has been for a one dimensional model but the
discussion is readily extended to three dimensions (Walgraef and
Aifantis, 1985c) and to more complicated dislocation processes
(Pontes et al., 2006 and references therein). A result that immedi-
ately appears from models of this type is that if one takes the
Orowan relation _3 ¼ rmvmb, where vm is the velocity of the mobile
dislocations and b is the Burgers vector, then using Eq. (61) one can
arrive at the relation (Schiller and Walgraef, 1988):

lTuring ¼
�
llm _3

b2

�1
2

r�
1
2 (63)

where llm is the mean free path of less mobile dislocations and r is
taken to be the total dislocation density. If one considers the Turing
wavelength to be equivalent to subgrain-size then Eq. (63) gives
a relation between subgrain-size and dislocation density which is
a function of strain-rate and hence stress depending on the
constitutive relation.

The arguments presented above for the development of dislo-
cation patterning apply to any set of defects in a deforming rock
mass where the densities of one population of defects diffuses at
a different rate to another. Ord and Hobbs (2010) have applied this
model to the development of joint patterns in deformed rocks.

4.10. Energy minimisation and the development of microstructure

A different approach to the development of dislocation patterns
and other types of microstructure arises from the extensive theo-
retical work on the development of microstructure associated with
martensitic transformations (Ball, 1977; Ericksen, 1980; Ball and
James,1987). The subject is highlymathematical and relies heavily on
the mathematics of convex analysis. The following is an attempt at
a brief summary of recentwork that extends thework onmartensitic
transformations to crystalplasticity inmetals and to thedevelopment
of other microstructures including folding and fracturing.

Although five independent slip systems are necessary in any
crystal to achieve a general homogeneous isochoric strain (Pater-
son, 1969), this same strain can also be achieved with fewer slip
systems if the development of microstructure (that is, inhomoge-
neous deformation) is allowed. Moreover this alternative mecha-
nism requires less energy and leads to smaller yield and flow
stresses than a homogeneous deformation. As an example (Fig. 20),
Ortiz and Repetto (1999) show that in BCC metals deformed in
plane strain, the deformation can be accommodated by single slip
or double slip depending on the type of deformation (extension,
pure shortening, simple shearing or combinations of these as
measured by the values of (311e322) and of 312 where 3ij are the
strains). The energy is less for single slip deformations than for
double slip orientations as shown in Fig. 20(d). In fact as the
orientation of the crystal is changed with respect to the imposed
deformation a series of low energy wells is generated corre-
sponding to the orientations where single slip dominates (Fig. 20d).

In addition to this observation, the operation of single slip is
commonly associated with mechanical softening, the two common
mechanisms being geometrical softening as the slip plane rotates
relative to the imposed stress, or latent hardening (Ortiz and
Repetto, 1999; Ord and Hobbs, 2011). The development of softening
in rate dependent materials is further explored by Carstensen et al.
(2002) and for rate independent materials byMiehe and Lambrecht
(2003) and Miehe et al. (2004). This softening leads to non-
convexity in the Helmholtz energy as shown in Figs. 20 and 21.

However there is another constraint on the development of
microstructure as a process of minimising the energy in that the
developed microstructure must be capable of producing an array of
deformed domains that are themselves compatible and that
together are compatible with the imposed deformation in order to
ensure no long range stresses. This leads to a hierarchy of micro-
structure represented by a progressive refinement in the length
scale of the microstructure as shown in Fig. 22. The opportunity
exists here to develop fractal geometries due to self-similar
refinement of the microstructure as it approaches a boundary
where strain compatibility is achieved.

In Fig. 21(d) two sets of shears are developed with deformation
gradients F� and Fþ. These approximate the imposed deformation
represented by the deformation gradient F and the approximation
becomes better the finer the spacing of the two sets of shear bands.
However strain compatibility can never be achieved by this process
alone and other deformation histories are necessary at the ends of
the shear bands to produce compatibility. This leads to a spatial
hierarchy of deformation histories that is shown as an example in
Fig. 22 and is represented by a “tree” structure in Fig. 23(a). The tree
is divided into a number of “levels” each with a number of “nodes”
as shown. The top node in Level 0 is the deformation history that
represents the large scale homogeneous deformation, F. The two
deformation histories in level 1 combine together to approximate F
and this relationship holds for each level below that so that for
instance F4 and F5 combine to approximate F2. Ortiz and Repetto
(1999) show that the number of independent degrees of freedom, d,
for the complete array of nodes is given by d ¼ 4ni � 3nl where ni is
the number of nodes such as F2 in Fig. 23(a) that have “daughters” F4
and F5 whereas nl is the number of “leaves” such as F6 that have no
daughters. This means that to match the nine independent
components of an arbitrary three dimensional deformation tensor
Fwe need d � 9. This cannot be accomplished by only two levels of
the tree and complete matching needs at least three levels. Fig. 23
(b) shows one such arrangement.

At large strains the microstructure can become refined so that
eventually inhomogeneous deformation is no longer required for
compatibility and any inhomogeneity becomes simpler even to the
extent of vanishing (Fig. 24). Fig. 24 shows this evolution of
microstructure for simple shearing by single slip of an initial square
with the slip direction, S, lying in the plane whose normal is T, at
various initial angles to the shearing direction as measured by the
angle a. The kink bands that form in order to minimise the Helm-
holtz energy and at the same time accommodate the imposed
deformation gradient have different orientations relative to the
shearing direction depending on a and rotate towards the shearing
direction as the strain increases; at high strains inhomogeneous
deformation may not be necessary to accommodate the imposed
deformation gradient and a steady state homogeneous micro-
structure remains.

Fundamentally different types of microstructure form depend-
ing on the nature of the stored Helmholtz energy function. The
literature on finite non-linear elasticity (see Antman, 1983 and Ball,
1998 for reviews) distinguishes four different types of energy
functions: convex, poly-convex, quasi-convex and rank-1 convex
functions. Since, from Eq. (21), Vosij ¼ vJ

v3ij
, the stress strain curve

corresponding to a particular Helmholtz energy function can be
obtained by differentiation of the energy function. Three of these
types of functions are illustrated in Fig. 25 together with the
stressestrain curve associated with that particular energy function
and an example of the resulting microstructure.

Fig. 25(a) shows a convex (quadratic) energy function with the
derived linear stress strain curve. In general, convex energy



Fig. 20. Low energy wells generated for single slip in BCC metals for various orientations of the crystal with respect to the imposed deformation. (a) Plane strain deformations
defined by various values of 2312 with respect to (311e322) where 3ij are the incremental strains. (b) Plot of the energy, J, for various deformations (c) Operating slip systems to
accommodate the imposed strain. See Ortiz and Repetto (1999, Fig. 5) for slip system nomenclature. (d) Plot of J for a circular traverse around Fig. 20b showing the development of
low energy wells. q is defined in Fig. (a). (After Ortiz and Repetto, 1999, Fig. 5).
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functions inhibit the formation of instabilities such as buckles,
kinks and other forms of microstructure so that the resultant
deformation is homogeneous. An example of a poly-convex func-
tion is not shown but involves matrices and so is ideal for use in
finite elasticity to represent the stored elastic energy of anisotropic
materials such as single crystals. Poly-convexity results in the
development of microstructure and is a major tool in under-
standing the microstructures that develop in martensite trans-
formations. Fig. 25(b) shows an example of a quasi-convex energy
function (possessing a discontinuity at the origin) with the derived
stress strain curve showing softening behaviour. The resultant
microstructure comprises buckling of any layers that are present
(Ball, 1977). Fig. 25(c) shows a rank-1 convex energy functionwhich
is non-convex with two energy wells. An example has already been
discussed in Fig. 21. The derived stress strain curve shows both
softening and hardening. Themicrostructure that develops consists
of chevron style folds.

If materials characterised by different energy functions are
inter-layered with each other then the opportunity exists for
layering of microstructure as shown in Fig. 26. In this way axial
plane crenulation cleavages and axial plane kink structures can
form.

Several important aspects of the microstructures developed in
polycrystalline rocks deforming by single slip follow from this
approach:
(i) Fractal grain boundaries. The microstructure shown in Fig. 22
becomes finer towards the original grain boundary in order to
produce compatibility of strain across the boundary and to
minimise the Helmholtz energy. If one considers each domain
to be a subgrain then a traverse through the array of domains
approximately parallel to XeY resembles a fractal Koch curve
(remembering that the traverse is a two dimensional one
across a three dimensional structure) with a fractal dimension
somewhere between 1.1 and 1.5 (Mandlebrot, 1977 pp.
44e50). This corresponds to the observations made on
serrated grain boundaries in deformed quartz aggregates
(Kruhl and Nega, 1996). Moreover the details of the distribu-
tion and magnitudes of the deformation gradients depend on
both the yield stress for the material and the magnitude of the
strain hardening (Carstensen et al. 2002) and hence depend on
temperature and strain-rate. This is suggested as the mecha-
nism behind the observed fractal dependence of subgrain
shapes reported by Takahashi et al. (1998).

(ii) Rotation recrystallisation. It is well known since the experi-
mental demonstration of Hobbs (1968) that some forms of
dynamic recrystallisation develop through successive rotation
of subgrains. Themicrostructuralmechanisms described above
that minimise the Helmholtz energy seem to produce this
phenomenon in that the domains shown in Fig. 22 eventually
undergo a large rotation although the misorientation between



Fig. 21. Development of microstructure from a non-convex energy function. (a) The normal convex form of the Helmholtz energy plotted against some measure of the deformation
gradient. (b) A non-convex form of the Helmholtz energy plotted against the deformation gradient for systems with a single slip system. The energy at C corresponds to
a homogeneous deformation gradient, F, and can be minimised by decreasing the energy to the tangent line AB. The homogeneous deformation gradient is unstable and evolves to
a stable form of microstructure consisting of two spatially alternating deformation gradients F� and Fþ which together approximate the homogeneous deformation, F. (c) The
stressestrain curve that results from the non-convex form of the Helmholtz energy in (b); the strains corresponding to F�, F and Fþ are shown. The horizontal line which divides the
stress strain curve into equal areas above and below the curve corresponds to the Maxwell stress. This has a direct analogue in the Equilibrium Chemical Thermodynamics of two
phase systems. (d) The microstructure that minimises the Helmholtz energy.
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adjacent domains may be quite small. This mechanism is dis-
cussed in detail in Section 4.11.

(iii) Core and mantle structure. The type of structure illustrated in
Fig. 22 is suggestedasapossiblemechanismfor thedevelopment
Fig. 22. Progressive refinement of microstructure towards a boundary in order to produce co
same time minimise the energy in the crystal. (a) The distribution of five different deformat
the boundary between two crystals A and B. Each domain is associated with a rotation of
sheared by 45	 with respect to grain A and A is shortened normal to the boundary. The distr
two grains. (After Ball and James, 1987).
of core andmantle structures inpartially recrystallisedmaterials.
The progressive development of the mantle structure with the
associated changes in grain orientation from core to grain
boundary is a mechanism for producing compatibility of strain
mpatibility of strain across the boundary XeY between two crystals A and B and at the
ion gradients in the undeformed state. The sizes of the domains become finer towards
the lattice with respect to adjacent domains. (b) The deformed state where grain B is
ibution of the five deformation gradients produces compatibility of strain between the



Fig. 23. A hierarchy of deformation histories (a) represented by a “tree” structure in
which the tree is divided into a number of “levels” each with a number of “nodes”. The
top node in Level 0 is the deformation history that represents the large scale homo-
geneous deformation, F. The two deformation histories in level 1 combine together to
approximate F and this relationship holds for each level below that so that for instance
F4 and F5 combine to approximate F2. Ortiz and Repetto (1999) show that the number
of independent degrees of freedom, d, for the complete array of nodes is given by
d ¼ 4ni � 3nl where ni is the number of nodes such as F2 in (a) that have “daughters” F4
and F5 whereas nl is the number of “leaves” such as F6 that have no daughters. This
means that to match the nine independent components of an arbitrary three dimen-
sional deformation tensor F we need d � 9. This cannot be accomplished by only two
levels of the tree and complete matching needs at least three levels. (b) shows strain
compatibility achieved by one such arrangement (after Ortiz and Repetto, 1999).
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between two initially undeformed and adjacent grains with the
operation of a single slip system.

(iv) Fractal subgrain-size distribution. In three dimensions the
structure illustrated in Fig. 22 can be approximated as a fractal
packing of spheres. Lind et al. (2008) have shown that a two
dimensional cut across such a packing will result in a distri-
bution of circles with a fractal dimension of 1.7e1.8. This is
suggested as the origin of such relations observed in deformed
metals (Hahner et al. 1998).
4.11. Crystallographic preferred orientations; rotation
recrystallisation

The introduction of X-ray and electron diffraction techniques to
examine the crystallographic preferred orientations (CPO) in both
naturally and experimentally deformed rocks has led to the
conclusion that slip on a single slip system is a common process in
the development of CPO (Schmid and Casey, 1986; Schmid, 1994;
Reddy and Buchan, 2005; Heilbronner and Tullis, 2006). This is at
odds with the postulate made in the TayloreBishopeHill theory of
CPO development that five independent slip systems operate
within each grain (Lister et al.1978; Lister andHobbs,1980) in order
to accommodate a homogeneous strain that is imposed on the
aggregate and on each grain. The observation that single slip
operates implies that the deformation within each grain is inho-
mogeneous. We have seen in Section 4.10 that single slip is
a mechanism for minimising the Helmholtz energy in a crystal and
results in non-convex energy functions. This in turn leads to the
development of heterogeneous deformation within a grain in an
attempt to match the imposed deformation gradient. Since
a general imposed deformation gradient has nine independent
components, nine independent deformation gradients must
develop in each grain to match a general imposed deformation. Ord
and Hobbs (2011) develop a model for rotation recrystallisation
based on the formation of subgrains as amechanism forminimising
the Helmholtz energy and using the arguments developed in
Section 4.10, particularly those derived from Ortiz and Repetto
(1999). The model proposes that a self-similar hierarchy of sub-
grains develops in each grain represented by a tree structure as in
Fig. 23(a). A specific tree structure is shown in Fig. 27(a) for an
imposed simple shearing deformation history and for a quartz grain
that has the most number of adjustments to make before its
deformation matches the imposed deformation gradient at each
instant. Part of the resulting array of subgrains is shown in Fig. 27
(b,c) and the complete list of orientations developed is portrayed
for the A side of the tree in Fig. 27(d). The CPO in this case develops
through the operation of single slip in each subgrain and the
process of refinement continues until the aggregate is dominated
by orientations that do not continue to evolve with increased
deformation (in this case with prismhai aligned parallel to the
imposed shear plane and shear direction). The CPO then is a steady
state CPO and no further evolution of the microstructure occurs in
a manner analogous to the microstructural evolution described in
Fig. 24 fromMiehe et al. (2004). At each stage in the development of
the CPO, compatibility of deformation is guaranteed between
adjacent grains by the compatibility requirement (Ord and Hobbs,
2011, Appendix) expressed by�
Fþ � F�

�
¼ a5N (64)

where Fþ and F� are the deformation gradients in adjacent sub-
grains labelled (þ) and (�), N is the normal to the subgrain
boundary and may be a rational or non-rational crystallographic
direction, a is an arbitrary vector and 5 is the dyadic product
operator (Section 2.1; Ord and Hobbs, 2011). For single slip the
deformation gradients, F�, in the two adjacent subgrains are
given by:

F� ¼ R��I þ g�s�5m�� (65)

where R�, are the rotations in each subgrain, I is the identity matrix
and g�, s�, m�are the shear strains, the slip directions and the slip
plane normals in each grain respectively (Ortiz and Repetto, 1999;
Ord and Hobbs, 2011).

The compatibility condition Eq. (64) means that although the
deformation of the aggregate is heterogeneous and during its
evolution, the aggregate passes through many levels of micro-
structural refinement, the deformation field throughout the
aggregate remains compatible from one subgrain to the next and
on average, approximates the imposed deformation gradient. This
means that all sub- and grain boundaries obey Eq. (64) whether
they are rational or non-rational in orientation. Some additional
self-similar refinement as discussed in Section 4.10 is necessary to



Fig. 24. From Miehe et al. (2004, their Fig. 10). Simple shear test. Comparison of evolution of microstructures for simple shear test with three differently oriented slip systems. S is
a unit vector parallel to the initial slip direction and T is an initial unit vector normal to the slip plane. a is the angle between the initial slip direction and the shear direction (a)
a ¼ 145	 , (b) a ¼ 135	 , (c) a ¼ 125	 . After loss of material stability microstructures develop which are modelled as a first order approximation to the deformation gradient with no
refinements.
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produce precise compatibility with the imposed deformation
gradient and the total process produces a fractal geometry for the
CPO illustrated in Fig. 27(f). The potential exists to link the fractal
dimensions of CPO’s with the environment of deformation
including parameters such as amount of strain, temperature and
strain-rate.

The outcome of this analysis is that CPO development by single
slip minimises the Helmholtz energy but the process demands
compatibility of deformation, as expressed by Eq. (64) across every
grain and subgrain boundary as does the TayloreBihopeHill theory.
Such compatibility has yet to be tested in natural or experimentally
dynamically recrystallised specimens.
4.12. Folding at the microscale due to feedback from chemical
reactions

Regenauer-Lieb et al. (2009) present a model in which the
reaction

muscoviteþ quartz/Kfeldsparþ sillimaniteþ H2O

is coupled to the deformation of a stronger single layer shown in
Fig. 28(a). As indicated in the Introduction to Section 4 the spatial
scale involved here (tens of millimetres) is such that the system can
be considered isothermal at strain-rates of 10�13 to 10�10 s�1 and so
the Energy Equation reduces to an equation of the form:

Mechanical dissipation ¼ Diffusive dissipation

þ Chemical dissipation:

This means that heat generated by the deformation is used to
preferentially increase the rates of diffusive processes and chemical
reactions rather than be conducted out of the system. Since the
mechanical dissipation in the stronger layer is larger than in the
weaker embedding material and the diffusion length for H2O is
small on the time scale of the deformation, the muscovite break-
down reaction is driven faster in the stronger layer and the
concentration of H2O becomes higher in the stronger layer than in
the embedding material (Fig. 28c). At this stage dissipation due to
diffusion is no longer important and the system is controlled by the
relation:

sij _3
dissipative
ij ¼ A _x (66)

Adopting a Newtonian viscous constitutive relation for the
stronger layer and an Arrhenius relation for the reaction rate,
A ¼ B _xexpðQchemical

RT Þ gives:

hijkl _3
dissipative
ij

_3dissipativekl ¼ B _x
2
exp

 
Qchemical

RT

!
(67)

which means that the effective viscosity, hijkl, is inversely propor-
tional to the square of the strain-rate. This relation is of the same
form as that proposed for thermalemechanical coupling by Fleitout
and Froidevaux (1980) for a two dimensional shear zone:

hminimum ¼ 8KthermalRT2maximum

_32h2Qchemical
(68)

where Kthermal is the thermal conductivity and h is the steady state
thickness of the shear zone. Similar expressions may be obtained
for power-law constitutive relations (Fleitout and Froidevaux
(1980). The result is localisation of the deformation due to strain-
rate softening and the deformation of the layer and embedding



Fig. 25. Different types of stored Helmholtz energy functions and the derived stress strain curves and microstructures. (a) Convex (quadratic) stored Helmholtz energy function
with derived linear stress strain curve. No microstructure develops; the deformation remains homogeneous. (b) Quasi-convex Helmholtz energy function with derived softening
stress strain curve. The microstructure consists of buckles in layers that may be present. (c) Rank-1 non-convex Helmholtz energy function with derived stress strain curve that
consists of both softening and hardening segments. The resultant microstructure consists of chevron folding.
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Fig. 26. Results of layering different materials with different energy functions. (a)
Quasi-convex layer embedded in material with rank-1 convexity. (b) Quasi-convex
layer embedded in quasi-convex material with finer scale layering. These hypothetical
relationships follow from models proposed by Ball (1977) and by Carstensen et al.
(2002).
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material is shown in Fig. 28d. As indicated by Eq. (67) the effective
viscosity is decreased in the shear zones which in turn are nucle-
ated on initial deflections of the layer. These localised deflections
ultimately grow to produce micro-folds. We leave a detailed anal-
ysis of this process to Section 5.
4.13. Chemical reactions and mechanical behaviour

One may have expected that by now there would exist a general
thermodynamic treatment of deforming-reactive systems that
links commonmechanisms such as dislocation motion and mineral
reactions. However the subject is still quite open. The general
problem of deriving constitutive equations for deforming-reacting
systems has not been solved but some progress has been made in
restricted areas by Coussy and Ulm (1996). That work serves as
a template for future developments. We consider a deforming
system within which a chemical reaction occurs and some of the
strain is achieved by diffusion mechanisms and/or diffusion assis-
ted mechanisms associated with the chemical reaction. This means
that deformation occurs through chemical species diffusing from
regions of high chemical potential to regions of low chemical
potential. Typical examples are HerringeNabarro, Coble and
“pressure solution” constitutive behaviour (Lehner, 1995). One
example of coupling of diffusive mass transport to deformation is
that of Fletcher (1982) who considers diffusive flux driven by
gradients in chemical potential as defined by Kamb (1959, 1961).
Coupling to dissipative effects is not considered. This flux is coupled
to the folding of a linear viscous layered material with a constant
but small porosity. For this model, diffusive transport is therefore
down gradients in the rock pressure. Fletcher shows that this
coupling can lead to a significant decrease in the dominant wave-
length below that which would develop with no diffusive coupling.
The following discussion is modified from Coussy (2004). It is to be
emphasised that this approach is different to that commonly
developed in the geological and metallurgical literature (eg.,
McLellan, 1980; Larche and Cahn, 1985) where the emphasis is on
the influence of non-hydrostatic stress on chemical potential in
elastic systems and dissipative processes are not considered.
We consider a chemical reaction or diffusive process where the
kinetics of the reaction are given by

A ¼ h
dx
dt

exp
�
Q
RT

�
(69)

where h is a constant with the dimensions of viscosity, t is time, Q is
the activation enthalpy for the diffusion process or the chemical
reaction and R is the universal gas constant. A is the affinity of the
chemical reaction and is a linear function (with units of stress) of
the difference between the sum of the chemical potentials of the
reactants and that of the products (Kondepudi and Prigogine,1998).
x is the extent of a diffusive process or of a chemical reaction.

Following Rice (1975) we define the Gibbs Free Energy, G
(Table 4):

G ¼ sij3
elastic
ij �J (70)

The state equations are then:

G ¼ G�sij; T ; x� ; 3elasticij ¼ vG
vsij

; s ¼ vG
vT

; A ¼ vG
vx

(71)

Differentiating Eq. (71) we obtain:

d3elasticij ¼ Sijkldskl þ aijdT þ bijdx (72a)

ds ¼ aijdsij þ C
dT
T

� L
dx
T

(72b)

dA ¼ bijdsij � L
dT
T

� adx (72c)

where Sijkl is the elastic compliance tensor, aij is the thermal
expansion tensor, C is the volumetric heat capacity of the solid
material. L is the latent heat associated with the reaction, so that as
the reaction progresses the heat produced is Ldx; the reaction is
exothermic if L > 0 or endothermic if L < 0. a is the decrease in
chemical affinity per unit of reaction extent under isostress and
isothermal conditions. The symmetrical tensor bij is given by:

bij ¼
v2G
vsijvx

(73)

bij(sij,T,x) is the tensor of chemical strain coefficients and is
dimensionless; as the chemical extent increases by an amount dx,
the chemical reaction produces a strainwith components bijdx. The
associated chemical dilation is biidx. The forms of the various
coefficients in Eq. (72), such as bij, need to be established by
experiments and at present we are sadly lacking in such data.

For a diffusion process, A represents the difference between the
chemical potential of the solid subjected to the diffusion process
and the chemical potential of the same chemical component else-
where within the solid where the temperature and/or stress are
different. For closed systems, the term bijdsij in Eq. (72c) describes
the stress concentration effect in the solid at heterogeneities. In an
isothermal system, the process is controlled by the diffusion of the
species towards the regions where the solid is poorly stressed.

If we now assume that the elastic properties are not influenced
by the chemical/diffusion processes and that the system remains
isothermal then Eqs. (72) and (73) give (Coussy and Ulm, 1996;
Coussy, 2004):

sij ¼ Cijkl
�
3totalkl � 3viscouskl

�
(74a)



Fig. 27. (a) The tree structure for a self-similar hierarchy of subgrains for an imposed simple shearing deformation history and for a quartz grain that has the most number of
adjustments to make before its deformation matches the imposed deformation gradient at each instant. (b) Part of the resulting array of subgrains arising from orientation A in
Fig. (a). (c) Subgrain arrays for orientation B. (d) The complete list of orientations developed for the A side of the tree. (e) Natural CPO for 200 quartz grains from Hobbs (1966). (f)
Demonstration of fractal geometry for the CPO.
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sij ¼ Cijkl3
viscous
kl þ hijkl

d3viscouskl
dt

(74b)

where

3viscousij ¼ bijx (75a)

Cijkl ¼ S�1
ijkl (75b)

C�1
ijkl ¼ abijbkl (75c)
hijkl ¼ hbijbkl (75d)

and it is assumed that the reference state is stress free with zero
affinity.

Coussy and Ulm (1996) proceed to establish rheological models
based on this approach. The need is to develop these models for
geological materials and to extend them to deal with isotropic and
kinematic hardening (or softening) as discussed by Houlsby and
Puzrin (2006a, Chapters 5, 6 and 7) and for the development of
anisotropy.



Fig. 28. Chemical-deformation coupling at the microscale. Initial growth of the model shown in (a). (b) A random set of muscovite breakdown sites is assumed as the starting
condition. Contours show the concentration of water (which has an equivalent effect on rheology as a temperature perturbation of 1 K) after 1% shortening. In keeping with the
thermo-chemical analogy, chemical changes are reported in terms of the effect of an equivalent temperature change on rheology. (c) The water concentration after 5.8 � 107 s
shortening. The maximum hydrolytic weakening is equivalent to 6 K heating. (d) Plot of strain-rate at the same time step as (c). The interface between the stronger and the weaker
material is clearly visible and decorated periodically by alternating regions of high and low strain-rates. The central strong layer buckles through weakening in the hinges defined by
the maximum strain-rate/dissipation sites on the interface. This result is equivalent to the thermalemechanical fold instabilities reported in Hobbs et al. (2007, 2008), however,
localisation and buckling occur here at the centimetre scale rather than at kilometre scale.
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Eq. (74b) can be interpreted as linear elasticeviscous behaviour,
with 3viscouskl representing the viscous strain and hijkl representing
a “chemical viscosity”. Notice that hijkl is a quadratic function of bij.
In particular Eq. (75d) says that if bij decreases by an order of
magnitude, then the “chemical viscosity”, hijkl, decreases by two
orders of magnitude. A similar situation arises from thermal-
emechanical feedback (Eq. 68) where, in a zone of localised
shearing, an order of magnitude increase in strain-rate leads to two
orders of magnitude decrease in viscosity (Fleitout and Froidevaux,
1980). If for instance the chemical reaction involves a decrease in
volume with continued straining then strong weakening occurs
during the chemical reaction, with the opportunity for localisation
to develop provided that such localisation is compatible with the
boundary conditions (Fressengeas and Molinari, 1987).

This discussion indicates that diffusion and chemical reactions,
if they are an integral part of the deformation mechanisms, can
result in modification of the viscosity, with the resultant develop-
ment of a “chemical viscosity” that is strongly dependent on the
extent of the chemical reaction and that can lead toweakening. This
is a strong mechanism for generating localisation in deforming-
reactive rocks.
4.14. A synthesis of coupled processes

A paper by Veveakis et al. (2010) provides the principles by
whichmuch of the previous discussionmay be integrated. Consider
a shear zone of thickness h as shown in Fig. 29a in which a number
of processes are operating concurrently with deformation
including mineral reactions and grain-size evolution. The zone is
deformed by the boundary velocity, v, and the temperature is fixed
on the boundaries at Tboundary. The strain-rate for stable shearing
induced by v is _g ¼ v=ðh=2Þ and the shear stress is s.

The temperature within the shear zone evolves according to the
Energy Equation (26):
cp _T ¼ cVos _gþ Vom
K _mK �

X
K

Fchemical
K � Fthermal � FQ (76)

In Eq. (76) we have added the extra process, Q, with a dissipation
function, FQ as indicated in the Helmholtz energy Eqs. (20) and
(21e). In this example Q is taken to be grain-size evolution but it
could be any other dissipative process such as recrystallisation,
preferred orientation development or fracturing.

If the processes involved are only deformation and heat
conduction then Eq. (76) reduces to

cp _T ¼ cVos _gþ cpkthermalv
2T
vz2

(77)

We assume that the constitutive law for deformation is a power-
law of the form s ¼ A�1

N _g
1
Nexpð Q

NRTÞ and we define the dimension-
less quantities

z* ¼ z
ðh=2Þ; t

* ¼ kthermal

ðh=2Þ2
t; T* ¼ T

Tboundary
; g* ¼ _g

_greference

Then, _T
* ¼ v2T*

vz*2 þ
cVos _g

reference

Tboundarykthermalcp
ðh2Þ2 _g* which we rewrite as

_T
* ¼ v2T*

vz*2
þ Grexpð�ArÞ (78)

where Gr ¼ cVo _g
references

cpkthermalTboundaryðh2Þ2 is the dimensionless Gruntfest
Number and Ar ¼ Q

RðT�TboundaryÞ is the dimensionless Arrhenius
Number. The Gruntfest Number is the ratio of the time scale for
heat production by deformation to the time scale for conduction of
heat away from the dissipation site. If Gr/N then the system is
adiabatic; if Gr/ 0 all of the heat has time to diffuse away from the
dissipation site without increasing the temperature at that site. For
Gr > 1 mechanical dissipation is faster than heat can be conducted
away and the temperature of the body increases. The Arrhenius
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Number is the ratio of the thermal and rate sensitivities of the
material. Ar may be thought of as the energy threshold where the
deformation becomes thermally and rate sensitive. If we take c¼ 1,
Vo ¼ 3.7 � 10�4 m3 kg�1, _greference ¼ 10�13 s�1, s ¼ 300 MPa;
Tboundary ¼ 673 K, kthermal ¼ 10�6 m2 s�1 and cp ¼ 103 J kg�1 K�1 then
Gr > 1 for h > 1.54 km. For h ¼ 1 m the reference strain-rate needs
to be greater than 2.4 � 10�5 s�1 for Gr > 1. These numbers are
consistent with those given in Table 6 and indicate that shear zones
need to be of the order of 1 km thick for temperatures to increase
within the shear zone solely by mechanical dissipation at strain-
rates of 10�13 s�1. For faster strain-rates the shear zone can be
thinner and temperatures will still increase.

If we explore steady state situations where _T
* ¼ 0 then equa-

tion (78) becomes the Bratu Equation (Fowler, 1997, pp 179e199)
which has been widely studied especially with respect to
combustion physics (Law, 2006). The steady state solutions to Eq.
(78) are shown in Fig. 29(b,c) and take two forms depending on the
value of Ar. If Ar is small then the plot of the temperature at the
centre of the shear zone, Tcentre against the Gruntfest Number is
known as a folded S-curve (Fig. 29b); if Ar is large then this plot is
a stretched S-curve (Fig. 29c). The lower branch, PQ, of the solid
curve in Fig. 29(b) is stable against perturbations in dissipation as is
the upper branch, RS. The middle branch, QR, is unstable. The
stretched S-curve of Fig. 29(c) is stable throughout. Since the
Fig. 29. (a) Shear zone of thickness h undergoing simple shearing forced by boundary veloc
small Ar demonstrating a folded S-curve on a plot of dimensionless temperature at centre o
demonstrating a stretched S-curve on a plot of dimensionless temperature at centre of shea
et al. (2010).
stretched curve develops for large values of Ar high temperature
deformations tend to be stable. For an Arrhenius dependence of
strain-rate on temperature Veveakis et al. (2010) show that
“thermal runaway” is not possible since the curves shown in Fig. 29
(b,c) always have positive slopes at high temperatures.

The dissipation within the shear zone is shown in Fig. 29(d). For
the lower stable branch in Fig. 29(b) and for the stretched S-curve in
Fig. 29(c) the dissipation remains small and although it is higher in
the centre of the shear zone the effect is small and not noticeable at
the scale Fig. 29(d) is drawn. For the unstable branch however the
dissipation is high and exponentially increases towards the centre of
the shear zone. If the shear zone is thick and only deformation and
heat conduction operate then this corresponds to an increase in
temperature as described by Fleitout and Froidevaux (1980).
However, independently of the thickness of the shear zone, the heat
generated and corresponding to this dissipation is available to drive
other processes such as chemical reactions (including melting) and
grain-size reduction according to Eq. (76). The localisation of dissi-
pation resulting from the exponential increase in dissipation
towards the centre of the shear zone means that other processes
such as mineral reactions and grain-size reduction (corresponding
to pseudotachylites, ultracataclasites and ultramylonites) are
extremely localised as discussed by Ben-Zion (2008) and Veveakis
et al. (2010).
ity v with temperature fixed on the boundaries. (b) Steady state solution to Eq. (78) for
f shear zone versus Gruntfest number. (c) Steady state solution to Eq. (78) for large Ar
r zone versus Gruntfest number. (d) Dissipation within the shear zone. After Veveakis
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If the processes involved are deformation, heat conduction and
chemical reactions then the Energy Equation (76) reduces to the
following two equations as quoted by Veveakis et al. (2010):

_T ¼ cVos _g
cp

exp
��Q
NRT

�
� kocexp

 
�Qchemical

RT

!
DH
cp

þ kthermalv
2T
vz2

(79)

and

Dc
Dt

¼ D
v2c
vz2

� kocexp

 
�Qchemical

RT

!
(80)

The solution to Eq. (79) is shown in Fig. 30a. If the DH of the
reaction is positive (an endothermic reaction) then the unstable
part of the S-curve tends to be stabilised. If the reaction is
exothermic, further destabilisation results. Endothermic mineral
reactions correspond to the formation of the common silicates,
devolatilisation reactions and melting. Exothermic reactions
correspond to the formation of hydrous-silicates (Haack and Zim-
mermann, 1996) and the crystallisation of melts. Thus the forma-
tion of quartz in shear zones andmelting are stabilisation processes
whereas the formation of hydrous retrogressive mineral assem-
blages and the crystallisation of melts tend to be destabilising.
Presumably grain-size reduction requires the input of energy to
generate new surface area and is endothermic and hence is a sta-
bilising process. The dissipation in the upper stable part of the S-
curve is shown in Fig. 30b and is much broader (but larger) than in
the unstable branch so that these stabilising processes tend to
inhibit intense localisation. The initiation of processes such as
mineral reactions and grain-size reduction is governed by the value
of Ar (Law, 2006). Thus the points A and B in Fig. 30(a) correspond to
different values of the activation energies for the reaction (or
process in the case of grain-size reduction).

4.15. Overview of Section 4

The important point that simplifies the application of thermo-
dynamics to the microscale is that at tectonic strain-rates a body of
rock up to about a metre in size remains approximately isothermal
so that the energy equation reduces to a set of coupled reaction-
diffusion equations or a set of reaction-diffusion-deformation
equations. Equations of this type are well known to exhibit insta-
bilities either temporally, spatially or combinations of both. Some
mineral reactions (especially those associatedwith redox reactions)
reported in the literature are autocatalytic and so one expects
Fig. 30. (a) Solution to Eq. (79) on a plot of dimensionless temperature at centre of shear
instabilities at the grain scale with no other forms of coupling. Even
though many networked mineral reactions may have the charac-
teristics of classical stable systems one needs to remember that the
theoretical background for many of these systems in the literature
is for homogeneous systems. Two aspects relevant to metamorphic
systems are relevant here. One is the demonstration by Ortoleva
and Ross (1974) that heterogeneities arising from localised reaction
sites, dissipation of energy from localised deformation sites and
gradients in chemical potential can induce instability in the form of
compositional oscillations in time and/or travelling diffusionwaves
in the simplest of stable chemical systems and could be recorded in
growing mineral grains as compositional zoning. The second
(related) aspect is that coupling deformation or weak infiltration of
fluids to a stable reaction-diffusion system can induce instability
(Ortoleva, 1989; Rusinov and Zhukov, 2008). Thus one expects
a large number of phenomena to arise from networked mineral
reactions in deformingmetamorphic rocks including compositional
zoning, metamorphic differentiation both on the scale of individual
grains and on coarser scales associated with the scale of the
deformation, and even more complicated patterns such as spiral
compositional patterns in porphyroblasts. An additional prediction
is that the detailed distribution of mineral phases in a deformed
metamorphic rock should be defined by interfaces that have the
topology of minimal surfaces. This opens a new field of study that
has come to be known as “dissipative crystallography” (DeWit et al.
1997) that is worthy of investigation now that determination of the
three dimensional geometry of microstructures by X-ray and other
means is available.

A fundamental outcome from these considerations is that
microfabrics that form due to coupled reaction-diffusion-deforma-
tion processes are controlled in their orientation by the deformation-
rate tensor and not the strain tensor. Thus these fabrics reflect the
symmetry of the kinematics (cf., Sander, 1911) and not geometrical
aspects defined by the strain. In a general non-coaxial deformation
history the geometry produced by the evolution of the deformation-
rate tensor is quite different to that of the strain tensor. Thus folia-
tions developed by reaction-diffusion-deformation coupling form
parallel to a principal plane of the deformation-rate tensor whilst
mineral lineations defined by elongate aggregates of like minerals
developed by these processes form parallel to a principal axis of the
deformation-rate tensor and not the strain tensor. This does not
prohibit foliations and lineations formed by distortion of initially
equant fabric elements developing parallel to principal planes and
axes of strain. The thermodynamic arguments are quite clear that
these two classes of foliations and lineations should exist in
deformed metamorphic rocks.
zone versus Gruntfest Number. (b) Dissipation in the upper stable part of the S-curve.
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Another approach to the origin of microstructure comes from
the demonstration that the Helmholtz energy of a polycrystalline
aggregate is minimised if the deformation can be accomplished by
shear strains parallel to a single plane as in the situation for single
slip in a crystal. This however means that the Helmholtz energy as
a function of the deformation, which is convex in classical theories
of plasticity, becomes non-convex. The theory that develops from
this lack of convexity is the same as for classical critical systems. It is
identical in principle to that for the development of two phases in
Equilibrium Chemical Thermodynamics, or for the development of
microstructure in (non-linear elastic) martensitic transformations
and for the behaviour of systems undergoing phase transitions
(critical systems). A homogeneous deformation is no longer stable
and the system splits into two domains in order to minimise the
non-convex Helmholtz energy. Each domain is characterised by
a different deformation gradient if an instant of time is considered
or by a different kinematic history if integrated over the complete
deformation history of the polycrystal. However there is another
constraint in that two levels of microstructural development are
not sufficient to match an arbitrary three dimensional deformation
gradient for the polycrystal as a whole and complete matching
needs at least three levels of microstructure and commonly more
than three. This leads to an explanation for rotation recrystallisa-
tion, fractal measures of grain boundaries and grain-size and an
explanation of core-mantle fabrics in partially recrystallised poly-
crystals. The process also leads to a relaxation of long range stresses
at the same time as completely fulfilling strain compatibility issues
so that the development of crystallographic preferred orientation
solely by single slip is not only explained but emerges as the
preferred mechanism in that it minimises the Helmholtz energy.
Again, the symmetry of the fabric reflects the symmetry of the
kinematics not of the strain. The coupling of deformation tomineral
reactions also leads to strain-rate softening and hence the devel-
opment of shear bands, micro-folds and micro-boudinage but the
details of this form of coupling are left to Section 5.

5. The intermediate scale

At the scale of about 1e100 m and tectonic strain-rates of say
10�12 s�1 heat that is generated in a system by any dissipative
process, including deformation, diffuses out of the system in
106e1010 s; these time scales are to be compared with the time
scale of 1011 s needed to reach 10% strain. Thus a volume of rock
smaller than 100 m cube will remain isothermal on time scales of
say 1012 s (3.171 � 104 yrs). Also, dissipation due to mass diffusion
takes place on a smaller spatial scale. This means that the Energy
Equation (26) becomes

sij _3
dissipative
ij ¼

X
K

�
Fchemical

�K ¼ C (81)

where C, the total chemical dissipation arising from all of the
chemical reactions.Fchemical, is given by Eq. (23c). The implication of
Eq. (81) is that the dissipation arising from deformation can be used
to increase the rates of chemical reactions at this scale. The
assumption that the VomK _mK term in Eq. (26) is not important
means that we do not expect metamorphic differentiation at this
scale that arises from reaction-diffusion processes although
differentiation is possible at these scales if the “diffusion” process is
bymass transport in a fluid. This process is beyond the scope of this
review but aspects have been treated by Ortoleva (1994) and
Rusinov and Zhukov (2008). In Section 4.14 we discussed the
analysis of Veveakis et al. (2010) which involves a situation similar
to the one proposed here except that Veveakis et al. are concerned
with faster strain-rates (associated with land-slides and seismic
events). As posed, the discussion of Veveakis et al. (2010) applies to
a much smaller spatial scale and is applicable at fast strain-rates;
we will follow their approach at the regional scale at tectonic
strain-rates. As indicated in Table 6 the scale of importance of these
effects depends on the strain-rate. Belowwe develop the argument
for the 1e100 m scale at tectonic strain-rates.
5.1. Chemical-deformation feedback

Consider a material undergoing simple shearing as shown in
Fig. 29(a) in which chemical reactions may also be progressing.
Then Eq. (81) reduces to s _g ¼ C which for a power-law viscous
material becomes

heffective _g
2
N ¼ C (82)

where the effective viscosity given by heffective ¼ hðg; _g; TÞ ¼ sðg;TÞ
_g

is taken to be a function of shear strain, f(g), strain-rate, and
temperature. Thus

heffective ¼ C _g�
2
N (83)

which says that, for chemical dissipation that is independent of the
strain-rate, the viscosity varies inversely with the strain-rate for
N > 0. Note that the effective viscosity is also observed to be
a function, f(g), of the strain. Perhaps mineral reactions are also
a function of strain-rate and such dependence would alter Eq. (83)
but since there appears to be no experimental work to support
a dependence of mineral reaction rates on strain-rate we neglect
such effects here. We also neglect the influence of strain softening
or hardening as expressed by f(g). This means that the material
softens as the strain-rate increases. This is known as strain-rate
softening and is illustrated in Fig. 31(b) for power-law rate depen-
dent materials. If N > 0 and there is no coupling to other processes
then a sudden increase in strain-rate causes a jump in the stress
(Fig. 31a) and if no other processes operate the stress settles down
to a value larger than the stress corresponding to the initial strain-
rate. This is known as strain-rate hardening behaviour and is an
intrinsic property of rate sensitive materials with N > 0. The effect
is greatest for N ¼ 1 and becomes less important the larger N
becomes, that is, as the material becomes less rate sensitive.
However if some other process operates to change the effective
viscosity then it is possible for the stress to settle down to a value
less than that for the initial strain-rate (Fig. 31b). Typical examples
include diffusion coupled with deformation in some alloys (Estrin
and Kubin, 1991) and thermalemechanical feedback (Regenauer-
Lieb and Yuen, 2003; Hobbs et al., 2008). Strain-rate softening leads
to localisation of deformation (Needleman, 1988; Estrin and Kubin,
1991; Wang et al. 1997) and is the important process necessary in
rate sensitive materials in order to promote significant localisation.

Eq. (83) is an example of chemical strain-rate softening and is
similar in form to Eq. (75). The chemicalemechanical feedback
interactions here mean that mineral reactions tend to proceed to
completion in some terrains whilst immediately adjacent unde-
formed or less deformed areas remain un-reacted (Hobbs et al.
2010a). Strain-rate hardening and softening behaviour is formally
identical to velocity strengthening and weakening behaviour
during frictional sliding (Ruina, 1983) and the analogue between
the two classes of behaviour has been explored byMesarovic (1995)
and Kameyama (2003).

The introduction of strain-rate softening into the constitutive
behaviour of rate dependent materials means that the thermody-
namic flux (the strain-rate) is no longer a linear function of the
thermodynamic force (the stress) and so, as shown by Ross and
Vlad (2005), there is no extremum in the entropy production rate.
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Hence, in particular, the principle of maximum entropy production
rate of Biot and Ziegler no longer holds and in order to solve
problems recourse to the ClausiuseDuhem relation is necessary.

5.2. Localisation of deformation

In rate-independent materials such as are commonly repre-
sented for rocks by MohreCoulomb, DruckerePrager or CameClay
constitutive relations, localisation of deformation derives from
strain softening and/or from the presence of corners on the yield
surface (Hobbs et al., 1990). This observation has lead to the
widespread presumption in the geosciences that strain softening is
a necessary condition for the development of localisation in all
materials whether they be rate-dependent or rate-independent.
One should note that localisation can occur in strain-hardening
materials (Rudnicki and Rice, 1975; Ord et al. 1991). Moreover, in
strain softening rate-dependent materials with N > 0 and no other
feedback mechanisms there is always a jump in stress associated
with a jump in strain-rate (Fig. 31) so that any increase in strain-
rate resulting from localisation means that the associated increase
in stress tends to offset any intrinsic strain-weakening. Thus it is
difficult to induce intense localisation of deformation in rate
dependent materials through strain softening alone as shown by
Mancktelow (2002); the difficulty decreases as N increases, that is,
as the material becomes more rate insensitive. Thus Mancktelow
(2002) shows that localisation in strain softening power-law (with
N ¼ 5) is better developed than in strain softening Newtonian
(N ¼ 1) materials. However the localisation in such materials is not
as intense as in natural examples such as those described by
Ramsay (1967). Hobbs et al. (2009) show that if strain-rate soft-
ening is introduced then localisation is facilitated and is able to
develop in both strain-softening and strain-hardening materials
(Fig. 32). The effect has been analysed for strain-softening and
strain-hardening materials by Needleman (1988) and Wang et al.
(1997) and is well known in strain-rate softening alloys that show
both strain softening and hardening (Estrin and Kubin, 1991). In
particular Needleman (1988) shows that strain softening in rate
sensitive materials is not a necessary condition for localisation.

5.3. Folding

One important discipline that has grown substantially over the
past 30 years but which is poorly represented within structural
Fig. 31. Strain-rate hardening and softening behaviour in power-law rate dependent
materials with N > 0. (a) Strain-rate hardening. A sudden increase in strain-rate leads
to a rapid increase in stress followed by a slow evolution to a stress which is higher
than the initial stress. (b) Strain-rate softening. After the initial response, the stress
evolves to a stress lower than the initial stress.
geology is non-linear bifurcation theory (Guckenheimer and
Holmes, 1986; Wiggins, 2003). A basic concept is that a deforming
system, given the necessary boundary conditions and/or constitu-
tive relations can behave in a number of ways with resultant
patterns of deformation (Fig. 33) that are: (i) homogeneous, (ii)
periodic, (iii) localised, and (iv) chaotic. As Champneys et al. (1997)
point out: “A response of a physical system that is localised to some
portion of a distinguished coordinate (either space or time) is surely
the next most fundamental state after homogeneous equilibrium and
periodicity”. In principle a particular system can exhibit all four
modes of deformation during a progressive deformation depending
on the way in which the constitutive behaviour evolves during
deformation.

In addition to these four fundamental modes of deformation, in
both the localised mode and the chaotic mode, order can appear
due to mode locking that arises when the growth of particular
wavelengths reinforces the growth of others to produce periodic
patterns (so called Arnol’d tongue effects, Hunt and Everall, 1999).
Most of the literature within structural geology in the past 30 years
has been devoted to elaborations upon Biot’s theory which predicts
(see discussion below) a strictly periodic response to deformation
of both single- and multi-layered materials. The concept of local-
ised folding involves the development of localised packets of folds
(Tvergaard and Needleman, 1980) rather than a single periodic
train of folds as shown in Fig. 33. The subject of localised and
chaotic folding is yet to be fully explored and developed within
structural geology but is clearly a rich and fertile field of endeavour.
Natural examples of localised folding are given in Fig. 34. It is
notable that the experiments by Ramsay (1967) using layered clay
models produced localised folds (see Ramsay, 1967, Figs. 3e51,
7e29 and 7e35).

5.3.1. Biot’s theory of folding
The emphasis over the past 30 years as far as folding theory is

concerned has been on the periodic mode of deformation (Biot,
1965; Fletcher, 1974; Smith, 1975, 1977, 1998; Johnson and
Fletcher, 1994a, b; Hudleston and Treagus, 2010) and has been
extremely influential in guiding thoughts on natural fold systems.
We briefly outline the Biot theory of folding in order to highlight
its strengths and limitations. The single layer situation is shown in
Fig. 35 to emphasise that two different end member boundary
conditions have been considered in the literature, namely constant
force (Fig. 35a) and constant velocity (Fig. 35b) conditions. In
Fig. 35(a) a dead weight of X kg loads a single layer of viscosity hL

embedded in material with viscosity hE with hL > hE whilst in
Fig. 35(b) the same model is shortened with constant velocity v at
each end. It is important to appreciate the dynamic and kinematic
differences between these two boundary conditions. The dead
weight is rigid so that the interface with the model remains planar
during subsequent deformation. This is the experimental config-
uration adopted by Biot et al. (1961) in the experimental confir-
mation of his theory except that in that study only the layer was
loaded. Since the embedding material is weaker than the layer the
dead weight in Fig. 35(a) is mainly supported by the layer and
exerts a constant force within the layer independently of the
constitutive behaviour of the material; a constant force boundary
condition applied to the ends of the model without the added
constraint that the ends remain planar would distort the ends of
the specimen. The constant velocity boundary conditions in Fig. 35
(b) mean, by definition, that there is no acceleration at the ends
and hence no force is exerted at the ends; the constant velocity
conditions are purely kinematic in character and as the model
shortens stresses are developed within the model depending on
the deformation-rate and the constitutive behaviour of the
material.



Fig. 32. Localisation of deformation in strain-rate softening materials (after Hobbs et al. 2009). Plots of the logarithm of the square root of the second invariant of the viscous strain-
rate. (a) Strain softening; shortening 40%. (b) Strain softening; shortening 50%. (c) Strain hardening; shortening 40%. (d) Strain hardening; shortening 50%.
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Biot (1965) developed a theory for folding in which the force in
the layer remains constant (corresponding to Fig. 35a) and showed
that any small perturbations from strict planarity in the embedded
layer are unstable and grow with continued deformation driven by
the force in the layer. The growth rates for individual perturbations
are independent of all others so that the growing wavelengths can
be represented as a Fourier series and the emphasis is on identi-
fying the fastest growing wavelength; this then becomes the
Fig. 33. The four fundamental deformation modes of a multilayer material.
dominant wavelength. This wavelength is proportional to the layer
thickness and depends weakly (the cubic root) on the ratio of the
mechanical properties (viscosities in the case of Fig. 35) of the
layersmaking up themodel. The Biot theory is a linear theory (Hunt
et al., 1997b) and holds strictly for small deflections; it has been
well developed for single layers embedded in a weaker matrix
(Biot, 1965; Sherwin and Chapple, 1968; Smith, 1975, 1977, 1979;
Fletcher, 1974) and for multilayers (Biot, 1965; Johnson and
Fletcher, 1994a, b). In particular the influence of variations in
thicknesses and mechanical properties in multilayer folding has
been extensively studied (Johnson and Fletcher, 1994a, b; Frehner
and Schmalholz, 2006; Schmid and Podladchikov, 2006; Treagus
and Fletcher, 2009). A review of some aspects of the theory is given
by Hudleston and Treagus (2010). For single layer elasticeviscous
systems the Biot theory predicts the development of two wave-
lengths for some combinations of elastic moduli and viscosity
(Mühlhaus et al., 1998; Jeng et al., 2002; Jeng and Huang, 2008)
although one should appreciate that the physical conditions for two
wavelengths to develop by such a mechanism in natural folds is
unlikely.

For finite deformations the two types of boundary conditions in
Fig. 35 result in quite different behaviours although at small
strains (where the Biot theory has been mainly developed) the
two behaviours are essentially the same. At large strains the
constant force boundary condition produces exponential growth
rates for fold development as the boundaries accelerate whereas
the constant velocity boundary condition produces rapid amplifi-
cation at first but a decreasing amplification rate as the force in the
layer decreases (Fig. 36a) and shortening progresses (Fig. 36b). In



Fig. 34. Examples of localised folding. Kangaroo Island, South Australia. Scale is approximately the same in all frames and is given by the boots in (b).
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the latter case initial deflections that develop early in the folding
history are amplified by an essentially homogeneous deformation
later in the history whereas in the former case the fold continues
to grow exponentially as the boundaries of the system accelerate
Fig. 35. Boundary conditions for folding. (a) Constant force conditions applied as
a dead weight. (b) Constant velocity conditions.
under the influence of the imposed force. Analytical solutions for
constant velocity boundary conditions and for large deformations
are given by Muhlhaus et al. (1994) and summarised by Hobbs
et al. (2008). The same effect of boundary conditions exists for
both single and multi-layer folding. The pragmatic outcome of the
influence of boundary conditions is that one cannot say anything
about the viscosity ratios (for purely viscous layers) unless one
knows the nature of the boundary conditions. As an example
linear viscous materials predict dominant wavelengths that are
comparable to natural situations for realistic growth rates for
constant force boundary conditions and for viscosity ratios as low
as 20 if initial layer parallel shortening is taken into account
(Sherwin and Chapple, 1968). However for constant velocity
conditions amplification rates are relatively small and for the same
values of amplification considered by Sherwin and Chapple (1968)
realistic folds do not develop unless viscosity ratios are of the
order of 1000 to 3000 (see Fig. 2 in Hobbs et al., 2008; Muhlhaus
et al., 1994).

The extension of the theory to large deflections for viscous
single layers is made by Muhlhaus et al. (1994, 1998) where it is
shown analytically that in two dimensions the fold system that
develops at large deformations remains strictly periodic as pre-
dicted by the Biot theory at small deflections. In three dimensions
(Mühlhaus et al., 1998; Schmid et al., 2010) another wavelength is
always present, even for plane strains, along the fold axis within the
axial plane and is expressed as culminations and depressions. This
effect arises from the dispersion function shown in Fig. 15 where
a weak maximum exists for a wave vector parallel to D2.

There is a relatively large literature (Sherwin and Chapple, 1968;
Hudleston, 1973a, b; Shimamoto and Hara, 1976; Fletcher and
Sherwin, 1978) that documents a range of wavelength to thickness



Fig. 36. Behaviour of a single layer elasticeviscous system for constant force and constant velocity boundary conditions. (a) History of force in the layer with deformation to large
shortenings. As prescribed, the force in the layer remains constant for constant force boundary conditions, but for constant velocity boundary conditions there is no force at the
boundary and any initial force decays to small values depending on the ratio of the viscosities in the layer and in the embedding medium. (b) Amplification of initial perturbations in
the layer with increased shortening. For constant force boundary conditions the growth rate is exponential and is driven by the acceleration of the boundary. For constant velocity
boundary conditions there is no force on the boundary and the amplification decreases with the amount of shortening so that eventually the only deformation consists of
homogeneous amplification of early formed fold structures.

Fig. 37. Fold systems with a range of wavelength to thickness ratios. All models
shortened 40%. H ¼ initial thickness of layer. The fold train almost fits into the “box”
with 9 wavelengths for H ¼ 25 and fits the “box” for H ¼ 9 with 10 wavelengths quite
well. In between irregular fold trains develop in order better to fit the “box”.

B.E. Hobbs et al. / Journal of Structural Geology 33 (2011) 758e818 803
ratios within a single natural fold system. This has been taken to
mean that the dispersion function as predicted by the Biot theory is
relatively flat so that there is a large probability that a range of
wavelengths near to the dominant wavelength will have similar
amplification rates. This is not supported by analytical solutions for
finite amplitude growth of initial perturbations (Mühlhaus et al.,
1998) where the dispersion function is quite sharply peaked. The
spread in observed wavelength to thickness ratios is not what one
would expect from the Biot theory for finite deformations and one
is forced to the conclusion, given the data presented in the above
papers that processes other than those incorporated in the Biot
theory are operating in natural fold systems.

It is possible in computer simulations of folding inmaterials that
do not exhibit strain-rate softening to produce non-periodic fold
systems or fold systems with a range of wavelength to thickness
ratios (Fig. 37). Such computer simulations could be taken as
confirmation of the above assertion that the Biot theory implies the
aperiodic behaviour observed in natural examples. However one
should be careful to observe that the irregular wave forms that
appear in Fig. 37 are an artefact of the computational model and
result from the finite size of the “box” in which the simulations are
performed. The figure shows a progressive change of thickness of
the layer from 25 units to 9 units with the same boundary condi-
tions and viscosity ratio between layer and embedding material in
all cases. In doing so the system tries to fit 9 wavelengths into the
box for a thickness of 25 units and 10 wavelengths for a thickness of
9 units. For thicknesses in between the 25 and 9 units of thickness
irregular fold profiles develop because of the inability of the pattern
to fit into the space available. This is a purely a geometrical
constraint issue and has nothing to do with predictions made by
the Biot theory. The same effect will influence the shapes of folds in
finite sized physical models.

5.3.2. Localised folding
What causes the development of localised folding? The answer

lies in thedevelopmentof softeningbehaviourof some formorother
(Tvergaard and Needleman, 1980). In rate independent materials
this involves strain softening but in rate dependentmaterials strain-
rate softening is fundamental. In thinly layered materials geomet-
rical softening seems to be sufficient to induce localised structures
(Ortiz and Repetto, 1999); most work to date has involved elastic
thinly layeredmaterials and layers embedded in a softeningmatrix.
The development of localised structures during martensitic trans-
formations is well known (Ericksen, 1998). Hunt et al. (2000) have
developed the theory of folding for thinly layered rate insensitive
materials andhaveshownthat geometrical softening (in themanner
discussed in Section 4.10 for slip in single crystals) leads to a non-
convexHelmholtz energy and the development of kink and chevron
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folds. TheMaxwell construction is used to indicate the critical stress
for the initiation of folding when the Helmholtz energy (in the form
of either elastic or plastic stored energy) in the system is sufficient to
promote or drive slip on the layers. The development of individual
regions of homogeneousdeformation inorder tominimise the (non-
convex) Helmholtz energy produces the structures illustrated in
Fig. 21. As in Section 4.10, there is an additional requirement that the
array of homogeneously deformed areas (that is, the limbs of the
folds) match the imposed deformation gradient. The argument is
identical to that developed in Section 4.10 except in this case there
are multiple low energy wells in the Helmholtz function and the
folds develop sequentially (Budd et al., 2001). Fig. 38 is presented as
an example of fold systems that form in order to minimise the
Helmholtz energy.

Another aspect to the development of folds in rate sensitive
materials occurs if the layers are thick and some form of strain
softening (such as damage-induced softening, Lyakhovsky et al.,
1997) other than geometrical softening occurs. We have seen from
Section 4.10 that softening implies that the Helmholtz energy
becomes non-convex. Hunt et al. (1989) and Hunt and Wadee
(1991) show that for a layer embedded in a softening material,
localised folding is the preferred mode of deformation to minimise
the non-convex energy function (Fig. 39). Hunt et al. (1997a,b) also
show that the localised packets of folds that do occur are very
sensitive to initial conditions and that chaotic responses can
develop (Fig. 40).

In rate sensitivematerials strain-rate softening can be important
and examples for fold development in layered materials are shown
in Figs. 41 and 42. Fig. 41(a) shows a multilayer model that exhibits
strain-rate softening and strain-hardening shortened parallel to the
layers by 12%. The effective viscosity, which began as uniform at
1020 Pa s in the layers and at 1019 Pa s in thematrix is nowpatterned
in the form of localised shear zones in the matrix and as changes
associated with weak buckling in the layers. At 30% shortening
(Fig. 41b) the pattern of high effective viscosity on the outer arcs of
Fig. 38. Chevron folds developed in thinly bedded shales and sandst
buckles and low viscosity in the inner arc is well developed and
shown in profile in Fig. 41(d). This kind of deformation is commonly
associated with relatively high strain-rates in the inner arc as
shown in Fig. 41(c) and results in reverse “dimples” on the inner arc
characteristic of some natural folds. By analogy with Fig. 39 it is
probable that the Biot mechanism operates to produce initial
periodic deflections in the layers but strain-rate softening soon
dominates and initiates localised folding. The analysis of Tvergaard
and Needleman (1980) is particularly instructive here. They show
that at the peak of the stressestrain curve (point A in Fig. 39) the
fold system is periodic and presumably this fold system has the
characteristics predicted by the Biot theory. Hunt and Wadee
(1991) show that the Helmholtz energy at this point is convex. At
some stage during softening after yield (Point B in Fig. 39) the
Helmholtz energy becomes non-convex (due to softening) and the
initial periodic wave form localises. This point is a critical point in
the system evolution and localisation characterises the systemwith
increased deformation. The system is particularly sensitive to the
degree of softening and the chaotic behaviour of Fig. 40 can result.
As Tvergaard and Needleman (1980) point out: the final localised
pattern of folding bears little resemblance to the periodic fold
pattern developed at the peak of stress.

Fig. 42 contrasts the development of folds in a single layer for
materials without (Fig. 42a,b) and with (Fig. 42c,d) strain-rate
softening and with constant velocity boundary conditions. The
initial viscosity ratio in both cases is 200. By 44% shortening the
model without strain-rate softening (a) has developed a more or
less periodic train of folds whereas the model with strain-rate
softening (c) has developed localised folds with no dominant
wavelength. An extra 6% of shortening makes very little difference
to the model with no strain-rate softening (b) because by now the
deformation in that model is essentially homogeneous shortening
with very little fold amplification. The model with strain-rate
softening (d) shows rapid tightening and growth of the fold
profiles.
ones at Millook Haven, Cornwall, UK. Photograph by Giles Hunt.



Fig. 40. Localised folding and fractal behaviour arising from buckling of a layer in
a softening embedding medium (From Hunt et al., 1996). (a) Fractal phase portraits
arising from variations in initial conditions shown in (b). (b) Small variations indicated
by the circle at the origin in the initial displacement, w, and initial acceleration, w00,
result in localisation (black) or no localisation (white) at a distance xdiv along the layer.
(c) Plots of displacement, w, against distance along the layer, x, for various initial values
of w and w00 (see Hunt et al., 1996, for details).

Fig. 39. Development of periodic and localised fold forms for a softening stressestrain
curve. The periodic wave form develops at the peak (A) of the stressestrain curve and
corresponds to a convex Helmholtz energy function (J). At a smaller stress (B),
a localised wave form has developed corresponding to a non-convex Helmholtz energy
function. The non-convexity in J arises from the softening in the stressestrain
relation.
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5.4. Implications of the mathematical structure of folding theory

The form of the mathematical equations that govern the
development of folds in layered metamorphic rocks presents
a framework that holds promise for integrating the development of
folds, mineral reactions and the development of axial plane struc-
tures. A complete theory has not yet been developed and the
following discussion is meant to indicate the potential for future
developments. The geometry of the situation is shown in Fig. 43(a)
where a layer whose thickness to wavelength ratio is small is
embedded in a material that here is represented as an array of
elastic springs and viscous dashpots. Such an embedding material
is known as a Winkler material; other types of embedding mate-
rials are discussed by Kerr (1964) and in particular Biot (1965)
considered a material where the response in Fig. 43(a) is linear. It
turns out that the rheological nature of the embedding material is
fundamental for the subsequent buckling behaviour of the layer
and of course this rheological behaviour is controlled by the
metamorphic reactions taking place in the material together with
the spatial distribution of the metamorphic products.

The general expression that describes the development of
a folded layer to high deflections is (Thompson and Hunt, 1973):
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(84)

where w(x, t) is the deflection of the beam, x in this case is
measured along the length of the deflected beam, w0hvw

vx with
a similar definition for higher order primes, Q is a term that
describes the mechanical properties of the layer, P is the force
parallel to the layer and F(w) is the restoring force per unit length
that the embedding medium exerts on the layer.

Following Biot (1965) most authors in the geological literature
assume w0 is small enough that terms such as w02 can be neglected
so that Eq. (84) reduces to

Q
v4w
vx4

þ P
v2w
vx2

þ F ¼ 0 (85)
If one remembers that as an example, for a limb dip as low as
30	, w02zðsin30	Þ2 ¼ 0:25 one sees that the classical Biot formu-
lation is restricted to quite small limb dips. Biot (1937) derived
a linear form of F(w) that is also dependent on the wave-number of
the deflection of the folding layer. This is the relationship adopted
by most workers in structural geology since Biot. It is mathemati-
cally convenient since it means that the folding problem can be
considered as a large number of non-interacting waves and the
issue becomes one of selecting the fastest growing wavelength. The
solutions are strictly periodic and only one wavelength survives to
become the dominant wavelength as shown analytically by Muhl-
haus et al. (1994, 1998).



Fig. 41. Development of multi-layer folds in visco-elastic, strain-rate softening materials; N ¼ 1. Elastic moduli are the same in all materials. Viscosity of layers initially 1020 Pa s;
viscosity of embedding material initially 1019 Pa s. The materials are also strain hardening. (a) 12% shortening parallel to the layering. Plot of log (current viscosity, Pa s). Red is 18,
light blue is 19; contour interval is 2. (b) Same as (a) but with 30% shortening. Red is 17, light blue is 22; contour interval is 1. (c) Zoom into fold hinge showing reversed curvature
“cusp” in the inside of the hinge arising from high strain-rate axial plane zone. Colours are a plot of log (strain-rate, s�1). Red is �12.5, dark blue is �10.5; contour interval is 0.25. (d)
Plot of log (current viscosity, Pa s) across a layer in the hinge of a fold. Overall shortening of model 25%.

Fig. 42. Development of folds in a single layer for materials without (a, b) and with (c, d) strain-rate softening and with constant velocity boundary conditions. The initial viscosity
ratio in both cases is 200. By 44% shortening the model without strain-rate softening has developed a more or less periodic train of folds whereas the model with strain-rate
softening has developed localised folds with no dominant wavelength. An extra 6% of shortening makes very little difference to the model with no strain-rate softening because by
now the deformation is essentially homogeneous shortening with very little fold amplification. The model with strain-rate softening shows rapid tightening and amplification of the
fold profiles. (After Hobbs et al., 2010b.)
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Fig. 43. Structure within the embedding material for folding. (a) An example of one form of rheological response of the embedding material to vertical displacement, w, of the layer
(after Whiting and Hunt, 1997). (b) An example of localised displacement packets (microlithons) resulting from localised folding. The boundaries of the microlithons are parallel to
the displacement vector of the layer, w.
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A number of non-linear forms of F have been proposed (Whiting
and Hunt, 1997) of which the form F(w) ¼ w � w2 has been widely
studied. This represents an embedding material that softens as it
deforms and the result is localisation of fold packets rather than the
Biot periodic solution. Thus a homogeneous embedding material in
which metamorphic reactions produce a weaker material will lead
to localised folding in embedded layers. However the deformation
in the embedded layer is also localised so that structures such as are
shown in Fig. 43(b) result. These structures resemble crenulations
or microlithons that are associated with crenulation cleavage in
natural rocks but no metamorphic differentiation is developed for
the situation presented. The axial planes of the crenulations are
parallel to the displacement vector w. The general form of the
localised deformation is (Whiting and Hunt, 1997):

w ¼ expðaxÞ½Acosbxþ Bsinbx� þ expð�axÞ½Ccosbxþ Dsinbx�
(86)

where a, b, A, B, C, D are constants.
A non-linear form of the reaction-diffusion equation is the

SwifteHohenberg Equation (Cross and Hohenberg, 1993):

vw
vt

¼ a
v4w
vx4

þ b
v2w
vx2

þ FðwÞ (87)

where a and b are constants, different to the ones in Eq. (86) and F is
generally a non-linear function of w. The stationary form of this
equation, that is for vw

vt ¼ 0, is identical in form to Eq. (85). These
equations result in a range of spatial distributions of mineral
compositions; the book by Peletier and Troy (2001) is devoted to
solutions of the stationary form of Eq. (87). If we take the redox
system as described by the Brusselator discussed by Fisher and
Lasaga (1981) then layered metamorphic differentiation develops
with a periodic spacing, l, as discussed by Fisher and Lasaga (1981).
In Fig. 44 we show an initially layered system inwhich a Brusselator
reaction system develops with a wavelength, l. This is reflected in
a periodic spatial distribution of mechanical properties which in
turn is reflected in the distribution of the reaction forces against the
layers within the embedding material as shown in Fig. 44(a). The
result is a periodic form of the interaction between the layer and
the embedding medium so that Eq. (85) becomes
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where m is an integer and is defined by Fisher and Lasaga (1981).
We know of no analytical solution to Eq. (88) but numerical
simulations are shown in Fig. 44 for deforming Maxwell materials
as in Fig. 44(a). For illustrative purposes the metamorphic layering
grows across the central layer in Fig. 44. As shown in Fig. 44(bed),
the folding process results in shear displacements parallel to the
metamorphic layering. The geometry now resembles crenulated
metamorphic layering with, importantly, shearing displacements
parallel to the axial planes of the folds. Thus the coupling of
metamorphic reactions to the folding process, both governed by
reaction-diffusion equations of identical form, develops crenulated
differentiated axial plane structures in localised fold systems with
shear displacements parallel to the axial planes and parallel to w.
Such features are hallmarks of deformed metamorphic rocks. The
situation modelled in Fig. 44 presents a situation where the
metamorphic layering grows faster than the folds develop. Other
scenarios where the layering grows at the same rate or slower than
the fold grows would be of interest. A more detailed discussion of
these models is given in Hobbs and Ord (2010a).

5.5. Boudinage

Boudinage development in power-law materials with no strain-
rate softening has been studied by Smith (1975, 1977, 1979) and by
Schmalholz et al. (2008). The result is that high rate insensitivity
(N � 5) and viscosity ratios greater than 20 are required to produce
boudinage. If strain-rate softening is introduced, boudinage forms
readily, even in Newtonian materials as shown in Fig. 45. Moreover
the boudins that form with strain-rate softening are localised with
no dominant wavelength.

5.6. Overview of Section 5

At the scale of about 1e100mat tectonic strain-rates of 10�12 s�1,
or slower, deforming-reacting systems are likely to be isothermal for
finite deformations. The dissipation produced by mechanical
processes is available to increase the rate of chemical reactions or
indeed other processes operating at this scale such as fracturing or
grain-size reduction. The dissipation arising frommineral reactions
(expressed by Eq. 23c) is also available to influence deformation-
rates and this leads to strain-rate softening especially in rate sensi-
tivematerials with low values ofN. Shear zones form readily in such
materials independently of whether the material also undergoes
strain softening or hardening. Layered strain-rate softening mate-
rials are unstable during deformation and undergo folding in
shortening deformations parallel to the layering even in viscous
materials with small (z5) viscosity ratios between layers and the



Fig. 44. The influence of growing metamorphic layering (initially vertical in all models) on the folding process. The materials are represented as Maxwell materials with elastic
modulus uniform at 1010 Pa. The viscosity of the embedding material varies sinusoidally from 5 � 1017 Pa s. to 1017 Pa s. within the metamorphic layers as they grow. The initially
horizontal layers in the figures have a constant viscosity of 1021 Pa s. The strain-rates are approximately 10�12 s�1 with constant velocity boundary conditions. (a) Distribution of the
y-component of the normal stress, syy; this represents the reaction of the embedding material to the folding deflections. Horizontal shortening is 10% with a dextral shear through
5	 . (b) Model shortened 30% coaxially. The blue vertical layers are growing by metamorphic differentiation according to the Brusselator model of Fisher and Lasaga (1981). (c) Zoom
into part of (b). (d) Model shortened 40% horizontally and sheared dextrally through 30	 .
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embedding materials. The resulting folds are localised in character
whichmeans they are not characterised by a dominant wavelength.
The mechanism of formation of these folds is different to the Biot
mechanismwhere all fold wavelengths grow independently of each
other andonewavelengthultimatelydominates to produce a strictly
sinusoidal fold system. Inmaterials that exhibit strain-rate softening
the mechanism is one of localisation of deformation arising from
strain-rate heterogeneities that nucleate along layers undergoing
initial deflections. Non-sinusoidal, localised fold systems develop. If
the deformation comprises extension parallel to the layers then
boudinage develops even in low viscosity contrast (z5) configura-
tions and for values of N as low as 1. This contrasts with boudinage
development in layeredmaterials that showno strain-rate softening
where viscosity contrasts >20 and values of N � 5 are necessary to
produce boudinage. Again the boudins are localised with no domi-
nant wavelength.

In thinly layered sequences, geometrical softening (as in the case
of single slip in crystal plasticity; Section 4.10) leads to non-
convexity in theHelmholtz energyof the systemand the consequent
formation of kink or chevron folds in order to minimise the Helm-
holtz energy of the system. Softening in one form or another is the
essential ingredient in developing localised folding or boudinage
(Tvergaard and Needleman, 1980). At peak stress the system
undergoes periodic folding as would be predicted from the Biot
theory. However at a critical softening the system bifurcates and
localised folding and boudinage develop. This is a critical phenom-
enon associated with the Helmholtz energy function passing from
convex to non-convex at a critical strain.
Themechanical response of the embeddingmaterial in a layered
model is fundamental in controlling the geometrical characteristics
of folds and also in defining the types of axial plane structures that
develop. If the reaction forces within the embedding material
arising from buckling displacements of a layer are a linear function
of the displacement then the folding response is sinusoidal as
predicted by the Biot theory. An overall softening response of the
mechanical properties results in localised folding with the forma-
tion of microlithons aligned parallel to the axial plane. If compo-
sitional layering develops from metamorphic differentiation early
in the folding history and parallel to the developing axial plane then
shear strains develop parallel to the axial planes so that the
structure resembles differentiated crenulation cleavage.

The literature devoted to intermediate length scales has so far
concentrated on mechanicalechemical coupling. The coupling to
damage (fracturing and joint system formation) is clearly a fruitful
future area of study particularly if linked to fluid flow and mineral
reactions to produce vein systems. There has been some progress in
these areas by Ord and Hobbs (2010) and Karrech et al. (2011) but
we leave discussion, although brief, to Section 6.

6. The regional scale

At the scale of about 1e10 km and tectonic strain-rates of say
10�12 s�1 heat that is generated by deformation diffuses out of the
system in 1012e1014 s; these time scales are to be compared with
the time scale of 1011 s needed to reach 10% strain. Thus a volume of
rock larger than 1 km cube and undergoing large deformations will



Fig. 45. Boudinage in Newtonian materials with strain-rate softening. Pure shearing deformation. Extension is 70%. (a) Geometry. (b) Logarithm of viscosity , and of strain-rate (c). In
the viscosity plot, dark green is 1022 Pa s, yellow is 1020 Pa s, purple is 1018 Pa s. In the strain-rate plot, red is 10�14 s�1, blue is 10�10 s�1. After Hobbs et al. (2010a).
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increase in temperature if heat is generated during deformation.
The ClausiuseDuhem relation (1) becomes

T _s ¼ F ¼ Fmechanical þ Fchemical þ Fthermal � 0 (89)

This means that the dissipation arising from deformation can be
used to increase chemical reaction rates at this scale. In addition,
heat generated by the deformation or by chemical reactions can
increase the strain-rate. The VomK _mK term in Eq. (26) is not
important at this scale which means that we do not expect meta-
morphic differentiation at this scale that arises from reaction-
diffusion processes. Veveakis et al. (2010) have analysed a situation
similar to the one proposed here except that they are concerned
with faster strain-rates (associated with seismic events and land-
slides) and so their results apply to a much smaller spatial scale. As
indicated in Table 6 the scale of importance of these effects depends
on the strain-rate. Belowwe develop the argument for length scales
larger than 1 km in scale at tectonic strain-rates. We are concerned
therefore with situations that dominate the regional crustal scale
and play a fundamental role in the mantle of the Earth (Yuen and
Schubert, 1979; Regenauer-Lieb and Yuen, 2003).
6.1. Thermalemechanical feedback including thermal expansion

Thermalemechanical feedback is by far the most extensively
studied (Cherukuri and Shawki, 1995a, b; Yuen and Schubert, 1979;
Regenauer-Lieb and Yuen, 2003, 2004) and best understood
process of all the coupled processes expressed in Eq. (1). The
Arrhenius dependence of strain-rate on temperature expressed by
Eq. (54) means that heat generated by deformation at the regional
scale and slow strain-rates increases the strain-rate which in turn
produces more heat. This feedback process however does not lead
to thermal runaway as suggested by many authors so long as the
strain-rate has an Arrhenius dependence on temperature (Veveakis
et al., 2010, Appendix A). However the increased strain-rates do
result in greatly elevated temperatures and Veveakis et al. (2010)
propose that other processes such as endothermic chemical reac-
tions (including grain-size reduction, fracturing, melting and pro-
grade mineral reactions) are initiated or accelerated before these
elevated temperatures are attained thus limiting the temperature
increase and stabilising the system.
The modelling of Regenauer-Lieb and Yuen (2003,2004), Rege-
nauer-Lieb et al. (2006, 2008) and of Hobbs et al. (2008, 2009)
shows that localisation of deformation readily results from ther-
malemechanical feedback (Fig. 46a,b). Regenauer-Lieb et al. (2008)
have modelled the development of shear zones on the scale of the
crust and some results are shown in Fig. 46(a,b). The conventional
view of the “brittle-ductile” transition being the strongest part of
the crust is modified by the observation that this part dissipates
energy at a greater rate than the rest of the crust and hence
weakens more than the rest of the crust by thermal feedback.
Hence the “brittle-ductile” transition becomes the weakest part of
the crust. The deforming crust largely unloads to an elastic state
during the development of the shear zones so that the force sup-
ported by the crust is more related to the elasticity of the crust
rather than the plastic/viscous properties. The concept of
a “Christmas Tree” structure (Goetze and Evans, 1979) for the crust
needs to be reconsidered in the light of thermalemechanical
feedback.

In addition, folding develops in layered viscous materials in
exactly the same way as is described for chemicalemechanical
coupling at the microscale (Section 4.12) and the outcrop scale
(Section 5.3). Thermal feedback results in the effective viscosity
decreasing with the square of the strain-rate (Eq. 68; Fleitout and
Froidevaux,1980). This strain-rate softening results in localised fold
systems as in Section 5.3 with the effective viscosity decreasing in
the inner arc of incipient buckles and increasing in the outer arc
(Fig. 46c). The thermalemechanical feedback response is sensitive
to local heterogeneities so that initial mechanical or geometrical
heterogeneities result in localised folding rather than the sinusoidal
fold systems expected of the Biot (1965) theory although as we
have seen earlier it is possible that the Biot mechanism is respon-
sible for the initiation of folds. As indicated earlier in this paper,
folds that develop by this mechanism can form with small (z5)
viscosity ratios between the layers and the embedding material.
Boudinage (Fig. 46d) also develops readily by this mechanism even
in Newtonian viscous materials and small (z5) viscosity contrasts
whereas boudins do not form without thermalemechanical feed-
back unless the viscosity ratio is larger (z20) and N is larger than 5.

The constitutive relation used by Regenauer-Lieb and Yuen
(2003) and by Hobbs et al. (2008, 2009) involves a dependence of
the strain-rate on the pressure through the thermal expansion. In the



Fig. 46. Structures developed through thermalemechanical feedback. (a) Shear zones developed at the crustal scale (Regenauer-Lieb et al., 2008). (b) “Slow” ductile shear zone
(Regenauer-Lieb et al., 2008). (c) Early stage in the development of localised folds by thermalemechanical feedback. High viscosities are developed at the outer side of fold hinges
and low viscosities develop on the inner sides of the hinges (Hobbs et al., 2008) (d) Boudinage developed in feldspar rich layers embedded in quartz-rich material (Hobbs et al.,
2009). (e) and (f) Crenulations developed as axial plane foliations (Hobbs et al., 2008). The upper figure in (e) shows the distribution of strain-rate.
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models, heterogeneity in the spatial distribution of the thermal
expansion is included as would arise from fluctuations in mineral-
ogical composition. The inclusion of thermal expansion turns out to
be very important. The dissipation that arises during thermal
expansion against the pressure induces localisation at the scale of
the thermal expansion heterogeneities which is much smaller than
the scale of the layering. This results in the development of axial
plane structures which have some affinities with crenulation
cleavages (Fig. 46e,f). Such structures are not an artefact of the
computational process; Needleman (1988) and Wang et al. (1997)
have shown that localisation arising from strain-rate softening is not
mesh dependent as is the case for localisation in rate-independent
materials. The results shown in Fig. 46e,f suggest that some axial
plane foliations may develop from localisation controlled by feed-
back processes nucleated at heterogeneities at a scale finer than the
layering and this effect may be important at all scales.

6.2. Melting. The development of granitoid systems

Two recurrent and related themes appear in discussions of
crustal melting and the emplacement of granitoids. These are: (i)
episodicity of melt production and emplacement (Sandiford et al.,
1991, 1992; Stüwe et al., 1993; Brown and Solar, 1998a, b; Stüwe,
2007; Brown, 2004, 2010) and (ii) self-organised criticality (SOC) as
a characteristic feature of the melting/transport/emplacement
system (Brown and Solar, 1998a, b; Petford and Koenders, 1998;
Bons and van Milligen, 2001; Brown, 2010; Bonamici and Due-
bendorfer, 2010). We indicate below that both characteristics of
melt systems in the crust are to be expected from thermodynamic
considerations although perhaps one should be self-criticising in
the use of the term self-organised criticality.

SOC is proposed as a characteristic property of computer models
that behave as though they undergo a classical phase change
(Sornette, 2000; Ben-Zion, 2008). In keeping with classical phase
changes in physical and chemical systems, the macroscopic
behaviour of the system is characterised by a range of scale
invariant properties at and near a critical point which marks the
phase boundary. Such properties have fractal (or at least power-
law) characteristics in both space and time that result from
fluctuations in properties at all scales. The steady state of SOC
behaviour results from a slow but steady forcing which results in
unsteady, irregular behaviour with extended periods of quiescence
punctuated by events, both large and small, again with a fractal
nature. This behaviour for SOC is not sensitive to the rate of forcing
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and the basic concept behind SOC is that systems undergo criti-
cality with little regard for the details of the forcing mechanism;
the system anthropomorphically “self-organises”. The fractal
characteristics of the system include the resultant geometry,
correlation lengths, cluster sizes and the life-times and sizes of
events (Bak et al., 1988). Ben-Zion (2008) points out that SOC
behaviour is not as rich as is observed in nature at least for seis-
micity of the crust and that almost all of the concepts inherent in
SOC already exist in classical notions of criticality without call for
a new name. In fact he prefers that SOC should be an acronym for
Standard Old Criticality and we agree.

Classical criticality (Sornette, 2000) refers to systems that
undergo a phase change at a critical point and include first order
transitions where there is a discontinuity in some properties at the
transition (critical point) and second order transitions where the
behaviour is smooth at the critical point. At that point, for both first
and second order transitions, the Helmholtz energy changes from
convex to non-convex and this is the hallmark of criticality. We
have seen from Section 4.10 that this implies, in deforming systems,
the switch from homogeneous deformations that minimise the
convex Helmholtz energy to the development of an array of
Fig. 47. Helmholtz energy and stressestrain curves for brittle materials. Figs. (a), (c) show
material and Fig. 42(b), (d) the resultant stressestrain curve. These models are motivated by
in experimental deformation of brittle materials. Fractal geometries (or at least power-law sc
a damaged crust and episodicity develops as the system is deformed through success
A / B / C / D in Fig. 42(c,d). See Del Piero and Truskinovsky (2001) for details.
inhomogeneous deformations in order tominimise the non-convex
Helmholtz energy. This array forms by a self-similar branching
process with the details of the branching process organised to
guarantee compatibility with the imposed deformation gradient as
far as this is geometrically possible. However, because such an array
can never completely match the imposed deformation gradient
without gaps, further self-similar refinement is required until the
long range stresses are minimised. These processes of refinement
produce fractal geometries and so this is a mechanism for
producing the fractal geometries observed at a critical point in
a deforming system. Although these concepts were developed for
elastic systems, they have now been extended to plastic (dissipa-
tive) systems and in particular, to systems that undergo fracture
(Francfort and Marigo, 1998; Del Piero and Truskinovsky, 2001).
Fig. 47(a,c) shows the dependence of the Helmholtz energy on the
deformation gradient for a brittle material and Fig. 47(b,d) the
resultant stressestrain curves. These models are motivated by both
the ubiquitous weakening and the discontinuous stress drops
commonly observed in experimental deformation of brittle mate-
rials. A thermodynamic approach to damage evolution (based on
Eq. 20) has been developed by Lyakhovsky et al. (1997) and
the dependence of the Helmholtz energy on the deformation gradient for a brittle
both the ubiquitous weakening and the discontinuous stress drops commonly observed
aling relations) develop for many features in order to minimise the Helmholtz energy of
ive non-convex portions of the Helmholtz function. An example is the sequence



B.E. Hobbs et al. / Journal of Structural Geology 33 (2011) 758e818812
Lyakhovsky and Ben-Zion (2008) where it is shown that the
Helmholtz energy becomes non-convex at a critical level of
damage; this critical point can be associated with localisation of
deformation. The implications for seismic behaviour of such a loss
in convexity are discussed by Ben-Zion (2008); we adopt his
concept of the crust as a system close to criticality in the classical
sense. Fractal geometries (or at least power-law scaling relations)
develop for many features in order to minimise the Helmholtz
energy of a damaged crust and episodicity develops as the system is
deformed through successive non-convex portions of the Helm-
holtz function. An example is the sequence A / B / C / D in
Fig. 47.

Spatial fractal geometries of granitoid systems have been
documented by Bons and Elburg (2001) at the regional scale and by
Tanner (1999), Marchildon and Brown (2003) and Bonamici and
Duebendorfer (2010) at the outcrop scale.

The development of a melt systemwithin the crust is envisaged
as follows. The model is based on the analysis of Hobbs and Ord
(2010b) which in turn is based on discussions by Phillips (1991).
This model proposes that the rate of melt production at the top of
the anatectic zone is controlled by themineralogical composition of
the anatectic zone coupled with the rate at which isotherms move
through the anatectic zone. This melt production rate governs the
melt flux at the top of the anatectic zone which acts as a control
valve for the complete melt transport-emplacement system and
also controls the evolution of melt pressure throughout the entire
system. The crustal melt system differs from most hydrological
systems where the permeability is commonly an independent
variable and the fluid flux is the dependent variable. In the crustal
melt system the melt flux at the anatectic front is fixed by the
chemical composition and rate of isotherm migration and the
mechanics of the system demands that the permeability evolves in
order to accommodate this flux. In general the permeability of the
lower crust is low and the pressure at the anatectic front ultimately
becomes super-lithostatic resulting in melt-induced fracture
Fig. 48. The deformation of the crust in order to accommodate the continued flux of melt d
episodicity governed by successive passages through discontinuities in the free energy funct
for the crustal plumbing system (Fig. 47b) also approximates a self-similar refining networ
(Phillips, 1991). We envisage this event to be a critical point for the
system where, by analogy with the arguments of Ben-Zion (2008),
the crust undergoes a phase transition and the Helmholtz energy of
the crust switches from convex to non-convex due to damage
accumulation (Lyakhovsky and Ben-Zion, 2008). The subsequent
deformation of the crust in order to accommodate the continued
flux of melt develops a fractal system of fractures formed by self-
similar refinement (Fig. 48a) with episodicity governed by succes-
sive passages through discontinuities in the free energy function
with increasing strain. It seems relevant that the model suggested
by Brown (2010) for the crustal plumbing system (Fig. 48b) also
approximates a self-similar refining network. Such networks are
widely developed in fracture systems (Hull, 1999) and are similar to
the stochastic networks developed tomodel seismic events (Kagan,
1982; Libicki and Ben-Zion, 2005).

6.3. Thermalemechanicalechemical reaction feedback and
regional tectonics

Many authors have suggested that orogenic systems are self-
organised systems whereby the many processes that operate
during orogenesis either compete with one another or reinforce
each other to produce the structures and distribution of meta-
morphic rocks and melts that we observe in mountain belts.
Foremost here are papers by Hodges (1998) and Brown (2010). At
the regional scale (that is larger than about 1 km), the only
processes that contribute to entropy production are (if we neglect
regional scale infiltration of fluids) deformation, chemical reactions
(including melting and crystallisation) and heat flow (Eq. 89). Of
these, deformation is exothermic together with most retrograde
metamorphic reactions and crystallisation of melts (Haack and
Zimmermann, 1996; Connolly and Thompson, 1989). Most pro-
grade metamorphic reactions including melting are endothermic.

The ClausiuseDuhem relation for regional scale thermal
emechanical coupling can be expressed as
evelops a fractal system of fractures formed by self-similar refinement (Fig. 47a) with
ion with increasing strain. It seems relevant that the model suggested by Brown (2010)
k.



Fig. 49. Solution to the Bratu equation for thermalemechanical feedback and with coupled chemical reactions. (a) The dissipation is given bysij _3
dissipative
ij . Stable branches are OA and

BC; unstable branch is AB. (b) The addition of endothermic (branch EN) and exothermic (branch FX) to the stability fields shown in (a). Endothermic mineral reaction nucleates at E
and produces stability. Exothermic mineral reaction nucleates at F and produces further instability.
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which is a form of reaction-diffusion equation known as the Bratu
equation (Fowler, 1997; Veveakis et al. 2010). The solution to this
equation is shown in Fig. 49(a) and consists of three branches (Law,
2006, Chapter 8). The branches OA and BC in Fig. 49(a) represent
stable deformation with no localisation whereas the branch AB is
unstable and represents localisation of deformation. The stable
branch OA is dominated by low temperature, high stress, low
strain-rate deformation processes where the heat generated by
deformation is not large enough to cause significant weakening via
the exponential term in Eq. (90). On the contrary the stable branch
BC is dominated by high temperature, low stress, high strain-rate
processes where the resultant heat is conducted away by the
diffusive term at the same rate it is generated. The AB branch
represents temperature conditions where weakening from the
exponential term offsets the conduction of heat so the thermal-
emechanical instabilities can initiate. As the ambient temperature
increases, the point A shrinks to the left of the diagram and even-
tually the S-curve of Fig. 49(b) becomes a “stretched” S-curve
shown in Fig. 29(c). Thus, as the ambient temperature of the crust
increases the likelihood of localisation by thermalemechanical
feedback decreases.

The effect of coupling mineral reactions to the thermal-
emechanical coupling is to stabilise or destabilise the deformation
at a particular temperature depending on whether the reaction is
endothermic or exothermic as shown in Fig. 49(b). In Fig. 49(b) an
exothermic reaction is initiated at a temperature corresponding to F
and this destabilises the deformation along the branch FX. At
a higher temperature, corresponding to E, an endothermic reaction
is initiated and that stabilises the deformation along the branch EN.
Hence endothermic reactions, which commonly correspond to pro-
grade mineral reactions, including devolatilisation, and anatexis,
stabilise the deforming system whereas exothermic reactions,
which commonly correspond to retrograde hydrating reactions and
melt crystallisation destabilise the system. The proposal by authors
such as Brown (2010) that melt accumulation in the anatectic zone
results in wholesale weakening and subsequent collapse of
orogenic belts could be an expression of criticality arising from the
Helmholtz energy of the crust losing convexity and instability
initiating as a result. As yet there is no synthesis of processes such
as damage and melt accumulation that can result in criticality (and
hence instability) and the initiation of endothermic pro-grade
mineral reactions (including melting) that can stabilise the system.
It would appear that the ways in which these competing processes
evolve and interact in an orogenic system control the detailed
geometry of individual systems.

6.4. Overview of Section 6

Thermalemechanical coupling at the regional scale produces
shear zones, folding and boudinage at the regional scale in a large
class of materials that otherwise would not produce these struc-
tures. Crustal scale shear zones develop preferentially in the
strongest parts of the crust where the mechanical dissipation is
highest. This means that the “brittle-ductile” transition which is
commonly taken to be the strongest part of the crust evolves to
become weaker than in classical models. During localisation the
crust unloads to an elastic state so that the elastic properties of the
crust control the “strength” of the crust (the forces it will support)
rather than the plastic/viscous properties. Both folding and bou-
dinage are localised in character rather than sinusoidal and form in
layered materials with small viscosity contrasts and values of N
smaller than develop in materials with no thermalemechanical
feedback. Axial plane foliations nucleate at heterogeneous sites of
dissipation smaller than the thickness scale defined by the layering;
these foliations are crenulation-like in character.

During deformation and metamorphism (including anatexis)
the crust behaves in a critical manner in the sense that it undergoes
classical phase transitions and these can be of an intermittent
character. One explanation for this behaviour is the development of
a non-convex Helmholtz energy function for the crust associated
with the development of critical levels of damage. These phase
transitions are expressed as the formation of power-law spatial
distributions of fractures. Such distributions arise from self-similar
refinement of inhomogeneous deformations to accommodate the
imposed regional deformation gradient. These fractal systems
presumably act as conduits formelt transport and lead to the fractal
geometry of melt transport systems and pluton distributions. The
progressive development of damage and the associated evolution
of the Helmholtz energy with time are proposed as an explanation
for episodic melt emplacement in the crust.

7. Concluding remarks

Structural geology is concerned with the processes that operate
during the deformation and metamorphic evolution of the litho-
sphere of the Earth and hence differs in a fundamental way to
a common approach in metamorphic petrology that is concerned
only with equilibrium mineral assemblages. The theory of Equilib-
rium Chemical Thermodynamics has been remarkably successful
especially in thefieldofmetamorphicpetrologyover thepast30years
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in enabling the construction of phase diagrams for general bulk rock
compositions. An additional success of the equilibrium theory is that
it enables the calculationof a largenumberof physical quantities such
as thermal expansion and specific heat from a bare minimum of
relations. It would of course be advantageous if similar rules of
behaviourcouldbeestablished for systemsnot atequilibrium.Todate
the progress in this regardhas been slowandundoubtedly is still very
much inprogress. For over 20 years the subjectwas dominatedby the
minimum entropy production “principle” (Prigogine, 1955; Biot,
1958) and it was not until the 1960s that Ziegler’s maximum entropy
production “principle” appeared (Ziegler, 1963 and references
therein) in apparent contradiction to the views of Prigogine and Biot.
Ziegler showed that the Biot principle and others deriving from
Onsager are identical to the maximum entropy production rate
principle. It was not until 1987 (Hunt et al. 1987) that severe doubts
were cast on Prigogine’s principle for chemical systems and only in
the last 5 years (Ross and Vlad, 2005) that any clarity has emerged. It
turnsout thatonly for thermodynamically “linear systems”definedas
systems where the thermodynamic flux is a linear function of the
thermodynamic force does a non-equilibrium extremum in the
entropy production exist. For most systems, and this includes the
classical examples of thermal conduction, mass diffusion and chem-
ical reactions an extremum in entropy production does not exist and
recourse has to be made to tracking the entropy production rate
which is conveniently expressed in the most general manner as the
ClausiuseDuhem relation. This relation, combined with the first law
of thermodynamics, enables the Energy Equation to bewrittenwhich
expresses the temperature change in a non-equilibrium system
arising from all of the dissipative processes. The fact that some
dissipative processesdominate atdifferent length scales then enables
some simplifications to be made but also establishes a fundamental
scale invariant characteristic of deformed rocks, namely, that the
deformation of rocks is scale dependent but different processes dominate
at different scales to result in geometrically similar structures.

The ClausiuseDuhem relation ultimately leads to a system of
coupled reaction-diffusion equations or reaction-diffusion-defor-
mation equations which for various ranges of parameters can
become unstable and produce patterns in deformed rocks which
comprise the range of structures that we are familiar with in
deformed rocks: variousmicrostructures, crystallographic preferred
orientations, foliations, mineral lineations and the various combi-
nations of the two expressed as SeL tectonites, folds and boudinage
at all scales, and the overall structure of orogenic belts. An important
conclusion at themicroscale is that catalysis is a fundamental aspect
of metamorphic reactions that enables reactions to be coupled
together (perhaps involving coupling to deformation and fluid
infiltration) to produce metamorphic differentiation patterns.

An important outcome of this review is that it highlights the role
of criticality in the development of structures in deformed rocks.
The term criticality is used in its classical sense (and not in the
sense of self-organised criticality) of the behaviour of the system
being associated with a critical parameter that marks the emer-
gence of a phase transition where the Helmholtz energy passes
from convex to non-convex (Ben-Zion, 2008). Such a transition
exists for a diverse array of processes including metamorphic
differentiation, the formation of subgrains and the development of
CPO through rotation recrystallisation, the transition from periodic
to localised fold and boudinage systems, the localisation of defor-
mation within shear zones to form thin layers of ultracataclasites,
ultramylonites and pseudotachylites and the evolution of damage
at all scales including the crustal scale. All of the structures formed
by these processes have fractal characteristics as is the case with
classical phase transitions. There is no need to invoke the concept of
self-organised criticality. The overarching concept involves the
evolution of deforming-reacting systems towards minimising the
Helmholtz energy which, commonly at the critical point, becomes
non-convex due to some strain or strain-rate softening process
which may be geometrical (rotation of planar fabrics), physical
(damage accumulation that degrades the strength) or chemical (the
production of newweak phases or thermal weakening arising from
chemical dissipation) in character. In some instances this mini-
misation process seems to involve the evolution of geometries
towards those characterised by minimal surfaces.

Intimately bound up with this tendency to minimise non-convex
Helmholtz energy functions is the development of multiple non-
equilibrium stationary states. Again, these arise through geometrical
softening, deformingnetworked chemical reactions,fluid infiltration
into networked chemical reactions and both thermalemechanical
feedback and damage accumulation at the crustal scale.
Epilogue

We have elected to devote relatively little space to the topics of
deformation and its effect on metamorphic phase diagrams, diffu-
sion (including pressure solution), preferred orientation develop-
ment in the sense of Kamb (1959), damage and grain-size reduction,
and the evolution of crustal scale orogenic systems. There have been
important advances in some of these areas (the influence of defor-
mation on metamorphic phase diagrams, diffusion and pressure
solution:Wheeler, 2010; Shimizu,1992,1997, 2001; Paterson,1995;
damage: Lyakhovsky et al. 1997; Lyakhovsky and Ben-Zion, 2008;
Karrech et al., 2011; grain-size reduction: Shimizu, 1998, 2008;
Ricard andBercovici, 2009 and references therein; Austin andEvans,
2007) but such advances have not yet been built into a fully coupled
thermodynamic framework. Interestingly, some of these areas are
those considered by Paterson (1973). In particular a major advance
has been to develop theories of fracture that involve non-convex
Helmholtz energies (Del Piero andTruskinovsky, 2001). The classical
theories of fracture proposed by Griffith (1920) and Barenblatt
(1962) assume a convex Helmholtz energy together with concave
surface energies and have beenvery successful in explaining aspects
of fracture development. The new non-convex theories explain the
development of more complicated fracture arrays but to date these
approaches have not formed a basis for understanding the fracture
patterns so widespread in naturally deformed rocks. Another
approach to this subject, which treats cracks as defects and formu-
lates their interactions in terms of coupled reaction-diffusion
equations, is by Ord and Hobbs (2010).

There is much to be learnt about systems not at equilibrium.
Deformedmetamorphic rocks offer a natural laboratory to test new
hypotheses at all scales but such an approach will require a set of
eyes adapted to read the non-equilibrium messages written in the
rocks. We look forward to an exciting future as the possibilities are
fleshed out.
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