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Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–
10168] have claimed that geologic carbon storage in deep saline
formations is very likely to trigger large induced seismicity, which
may damage the caprock and ruin the objective of keeping CO2

stored deep underground. We argue that felt induced earthquakes
due to geologic CO2 storage are unlikely because (i) sedimentary
formations, which are softer than the crystalline basement, are
rarely critically stressed; (ii) the least stable situation occurs at
the beginning of injection, which makes it easy to control; (iii) CO2

dissolution into brine may help in reducing overpressure; and
(iv) CO2 will not flow across the caprock because of capillarity,
but brine will, which will reduce overpressure further. The latter
two mechanisms ensure that overpressures caused by CO2 injection
will dissipate in a moderate time after injection stops, hindering the
occurrence of postinjection induced seismicity. Furthermore, even if
microseismicity were induced, CO2 leakage through fault reactivation
would be unlikely because the high clay content of caprocks ensures a
reduced permeability and increased entry pressure along the localized
deformation zone. For these reasons, we contend that properly sited
and managed geologic carbon storage in deep saline formations re-
mains a safe option to mitigate anthropogenic climate change.
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Zoback and Gorelick (1) claim that geologic carbon storage in
deep saline formations is very likely to trigger induced seis-

micity capable of damaging the caprock, which could ruin the
objective of keeping CO2 stored deep underground. According
to them, the main reason for this is that overpressure will be
excessively high and failure conditions will be reached because
the upper crust is critically stressed, i.e., close to failure. It is true
that an excessive overpressure may induce microseismicity and
even felt seismicity (2). It is also true that a felt seismic event
could stop CO2 sequestration projects, as happened with the
geothermal project Basel Deep Heat Mining Project in Swit-
zerland (3). However, there is no evidence from the existing CO2
storage projects that CO2 has the potential of easily inducing
large earthquakes (4).
No felt seismic event has been reported to date at either pilot

or industrial CO2 storage projects (4–8). Even at In Salah,
Algeria, where a huge overpressure was induced, no felt seismic
event has been induced (7, 9). CO2 storage in depleted gas fields
has also been proven to be a safe option both at Otway, Australia
(6) and at Lacq, France (5, 8). Actually, CO2 storage operates under
conditions similar to natural gas storage, which has not induced felt
seismicity for decades (10–12). The recent induced seismic events at
Castor, Spain (13) appears to be the only exception. However, too
little is known about this site to extract any lesson. In fact, the very
ignorance about what happened at Castor suggests that site un-
derstanding and management may be the critical issues.
We argue that large induced earthquakes related to CO2

injection in deep saline formations are unlikely because (i)

sedimentary formations are rarely critically stressed; (ii) the least
stable conditions occur at the beginning of injection; (iii) CO2
may dissolve at a significant rate, reducing overpressure; and
(iv) brine will flow across the caprock, lowering overpressure in
the reservoir. For these reasons we believe that geologic carbon
storage in deep saline formations remains a safe option for
mitigating climate change.

It Is Not True That the Whole Upper Crust Is Critically
Stressed
It is generally accepted that the crystalline basement is critically
stressed at some depth intervals (14–16). However, CO2 will be
injected in shallow (1–3 km deep) sedimentary formations, which
are much softer than the brittle and stiff crystalline basement. As
such, stress criticality, i.e., mobilized frictional coefficients, μ, in
the range of 0.6–1.0 (17), is not usually observed at shallow
depths within sedimentary formations (16, 18–21). We have
compiled effective stress data of sedimentary formations and
they fall within values of mobilized frictional coefficients around
0.4, i.e., the actual deviatoric stress is lower than the critical one
(Fig. 1). This value is moderately low compared with the fric-
tional coefficients around 0.6–0.8 of the critically stressed crys-
talline basement. In particular, the mobilized friction coefficients
of sedimentary rocks where CO2 is being, has been or is planned
to be injected is always lower than the critical value of 0.6. This
means that there is a wide margin before CO2 injection might
induce failure conditions and therefore, trigger a seismic event.
To illustrate that sedimentary formations are unlikely to be

critically stressed, we have built a simple model of the upper
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crust in a typical intraplate setting. The shallowest 2.5 km rep-
resent sedimentary rocks and the rest, down to 16 km deep, is
crystalline rock. The sedimentary rock is softer than the crys-
talline rock (see SI Text for details). The stress state is initially
isotropic, i.e., the mobilized friction coefficient equals 0. We
impose a typical intraplate strain rate of 10−17 s−1 (22). As a
result, the crystalline rock becomes critically stressed (μ = 0.6)
after 6 Myr. However, the sedimentary rock remains less stressed
(μ = 0.4) because of its lower stiffness (Fig. 2). This numerical
result is consistent with the low frequency of intraplate seismic
events and with the effective stress data compiled in Fig. 1 that
evidences that the whole upper crust is not critically stressed. In
particular, the shallow ‘soft’ sedimentary formations are far from
critically stressed.
Some support for this simple model results from the fact that it

yields the maximum mobilized frictional coefficient at a depth
between 5 and 6 km (Fig. 2). This means that shallow earth-
quakes are most likely to occur in the crystalline basement at this
depth. Interestingly, this depth of maximum occurrence of
earthquakes is consistent with observations of frequency-depth
distribution of earthquakes in continental intraplate regions such
as Haicheng, China; Thessaloniki, Greece; Hansel Valley, Utah;
Pocatello Valley, Idaho; Wasatch, Utah; Coso geothermal field,
California (23) and Galicia, Spain (24); and in the plate
boundary of the San Andreas Fault, California (23, 25, 26).
The evidence that sedimentary rocks are not critically stressed

(Figs. 1 and 2) appears to contradict the large magnitude
earthquakes induced by wastewater injection in sedimentary
formations in 2011 at Oklahoma, Ohio and Arkansas. These
earthquakes have been used as an argument against geologic
carbon storage (1). However, the earthquakes were induced in
the critically stressed crystalline basement and not in the sedi-
mentary formations where wastewater was injected. Wastewater
was injected into the basal aquifer, which led to the pressuriza-
tion of faults in the crystalline basement (27–29). In the case of
the earthquakes of Guy and Greenbrier, Arkansas, wastewater
was injected into the Ozark aquifer (3 km deep), which is placed
right above the crystalline basement. Wastewater leaked into a
deeper fault, inducing four earthquakes of magnitude M > 3.9,
with a maximum magnitude of 4.7, at around 6 km deep (30).
This finding highlights (i) the need for proper characterization
and (ii) the importance of a seal below the storage formation, to

isolate the critically stressed crystalline basement from CO2 in-
jection in sedimentary formations.
It has been conjectured that if an induced earthquake similar

to those triggered by wastewater injection in 2011 occurred in a
CO2 storage site, fault reactivation would lead to CO2 leakage
(1). We contend that close analysis of fault zone architecture
reveals that CO2 will not easily penetrate into the portions of the
fault contained within shale rocks (31). Fault permeability, which
is highly variable in reservoir-caprock sequences (32, 33), de-
creases several orders of magnitude for increasing clay content,
leading to a much lower permeability in the caprocks than in the
reservoirs (34, 35). Rocks with low clay content, like reservoirs,
tend to fracture, increasing the width of the damaged zone and
usually increasing permeability in response to shear (34). How-
ever, clay-rich rocks, like caprocks, tend to concentrate shearing
in the fault core, which reduces the grain size by friction, thus
reducing fault permeability (34). Therefore, shear slip will usu-
ally increase fault permeability in the reservoir, but decrease it in
the caprock, increasing the permeability contrast in the vertical
direction (31, 36). Indeed, numerical simulations show that CO2
leakage is negligible when accounting for this heterogeneity in
permeability in the vertical direction within faults undergoing
shear displacement (37). Even assuming constant permeability in
the vertical direction within the fault, no correlation has been
found between shear slip and CO2 leakage (38). Furthermore,
capillary entry pressure increases with both clay content and
reduced pore size, which is what ultimately hinders CO2 pene-
tration into the fault (39).

Overpressure Evolution
The evolution of overpressure induced by CO2 injection is sig-
nificantly different from that of water (or wastewater) injection.
Water injection at a constant mass flow rate through a vertical
well into an extensive (infinite) confined formation induces an
overpressure that increases linearly with the logarithm of time
(40). Therefore, overpressure will become large for very long
injection times. This was the case at Paradox Valley, Colorado,
where overpressure increased more than 16 MPa over a decade
of injecting a constant volume of saline water (29). On the other
hand, the low viscosity of CO2 implies that overpressure caused
by CO2 injection peaks at the beginning of injection and drops
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slightly afterward (41–48) (see inlet Fig. 3). This difference
makes CO2 injection particularly interesting because the most
critical state occurs at the beginning of injection (41, 49) (Fig. 3).
This initial critical situation is illustrated by what happened at
Weyburn, Canada, where around 200 microseismic events were
induced at the beginning of CO2 injection, but no more events
were measured afterward (50). In fact, initial microseismicity
may be reduced by progressively increasing the CO2 injection
rate to avoid the peak in overpressure at the beginning of
injection.
Storage formations need not be extensive or fully confined, as

assumed in the above discussion. Overpressure induced by CO2
injection may increase over time if the pressure perturbation
cone reaches a flow barrier, such as a low-permeability fault. In
such case, or in a compartmentalized reservoir (51), the reservoir
storage capacity could be limited by the maximum sustainable
injection pressure, defined so as to avoid induced seismicity (52).
Fluid pressure must be monitored to identify the presence of
flow barriers and to adopt mitigation measures to avoid an ex-
cessive overpressure that could lead to induced seismicity and
make the operation uneconomical. Nevertheless, the reservoir
will never be totally closed and overpressure will dissipate with
time, helping to maintain fault stability and hinder postinjection
induced earthquakes.
Overpressure will extend tens to hundreds of km for the time

scales of CO2 storage projects, i.e., 30–50 y (53). At these spatial
scales, the effective caprock permeability can be two orders of
magnitude higher than that of the core scale due to the existence
of discontinuities (54). Thus, caprock permeability can become
relatively high, i.e., up to 10−16 m2 (55). Because the caprock
seals brine by permeability, but it seals CO2 by capillarity, brine,
but not CO2, can flow through the caprock (56). Fig. 4 shows that
overpressure can be significantly lowered for relatively perme-
able caprocks, which would reduce the risk of inducing seismic
events through fault reactivation due to the lower overpressure.
Furthermore, the lateral extent of the pressure perturbation
cone will also be significantly reduced (Fig. 4), which increases
the reservoir storage capacity (57) and reduces the number of
fractures and faults that will undergo stability changes. Indeed, a
steady state could be reached in which the flow rate of brine
flowing through the caprock equals the injected flow rate. Using
leaky aquifers theory (58), and the geological setting of Fig. 4,

the steady state would be reached after some 200 y of injection if
the permeability of the seals is 10−18 m2, but only after 21 y if the
permeability of the seals equals 10−17 m2. Thus, this steady
state may take place at some CO2 injection sites before the
injection finishes.

CO2 Dissolution
CO2 dissolution reduces the total fluid volume filling the pores,
thus reducing overpressure (59) and the risk of induced seis-
micity. The high solubility of CO2 makes dissolution one of the
main trapping mechanisms in the long term. For instance, it has
been observed in carbonate-dominated reservoirs containing
naturally occurring CO2 that up to 90% of this CO2 can dissolve
at the millennial timescale (the remaining 10% would be trapped
in precipitated minerals) (60).
CO2 dissolution also operates over relatively short timescales

and provides a significant storage capacity (61, 62). CO2-rich
brine is denser than the native brine, which causes the brine
immediately beneath the CO2 plume to be denser than the brine
below. This situation is hydrodynamically unstable and leads to
the formation of CO2-rich gravity fingers that sink to the bottom
of the formation and bring fresh brine upwards, forming con-
vective cells that enhance CO2 dissolution rate (63–67).
CO2 dissolution is likely to occur quickly for high vertical

permeability (k > 10−13 m2), which will lower overpressure sig-
nificantly. Indeed, Elenius et al. (68) calculated that up to 50%
of the injected CO2 at Sleipner (k = 2 · 10−12 m2), Norway,
becomes rapidly dissolved when the formation brine has no
dissolved CO2. Furthermore, they estimated that between 7 and
26% of the total 15 Mt of CO2 injected in the period 1996–2011
is already dissolved. These results are in agreement with our
calculations (SI Text), which predict a dissolution rate at Sleipner
of 12% of the injected CO2. Still, these calculations may un-
derestimate the actual rate at which CO2 dissolves because they
neglect the effect of dispersion, which significantly accelerates
the onset of gravitational fingering (64). Furthermore, mass
transfer is enhanced by convection in inclined aquifers, which are
common in sedimentary basins (69). However, dissolution be-
comes negligible for low vertical permeability. For instance, at In
Salah (k = 10−14 m2), Algeria, only 0.03–0.1% of the injected
CO2 dissolves into the brine (68). Therefore, only when vertical
permeability is high, CO2 dissolution will contribute to signifi-
cantly reduce overpressure with time, progressively leading to a
mechanically more stable situation.
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Discussion and Conclusions
We have given evidence that sedimentary formations are not, in
general, critically stressed (recall Figs. 1 and 2). Furthermore,
overpressure will be relatively small when injecting CO2 because
(i) it peaks at the beginning of injection and afterward drops
slightly (recall Fig. 3); (ii) CO2 dissolution may occur quickly and
at a significant rate, if the vertical permeability of the reservoir is
high, contributing to reduce overpressure; and (iii) because
brine, but not CO2 because of capillarity, can flow through the
caprock, overpressure will be lowered significantly and a steady
state may be reached at some sites within the injection period
(recall Fig. 4). The combined effect of a noncritically stressed
storage formation and a small overpressure make geologic
storage a safe strategy to reduce emissions of greenhouse gasses
to the atmosphere.
This conclusion is not meant as an unqualified approval of any

site for storage. Every site requires a proper suitability study. To
this end, numerous best practices manuals are available (see ref.
70 for a review). The key issue is site characterization (71), which
includes proper structural geology understanding and a good
hydromechanical testing (72). Characterization may lead to dis-
missal of some reservoirs. Still, the point is that suitable sedi-
mentary basins to store huge volumes of CO2 are abundant
around the world (62, 73, 74).
Experience with CO2 storage is still limited, so few general-

izations can be made. Instead, some lessons can be learnt from
geothermal operations, despite the fact that these tend to con-
centrate in regions of anomalous thermal gradients, which are
more prone to instability. For instance, fluid injection in sedi-
mentary rocks within the overpressure ranges that are reasonable
for CO2 injection, i.e., ΔP < 10 MPa, do not usually induce
seismicity (3 sites with seismic events greater than magnitude 2
out of 23 injection sites reviewed by ref. 16). Induced seismicity is
much more likely in crystalline rocks (3 sites with seismic events
greater than M 1.9 out of 3 injection sites in granites when the
injection pressure was lower or equal than 11 MPa) (16). These
data confirm that, contrary to crystalline rocks, sedimentary
rocks are rarely critically stressed (recall Figs. 1 and 2).
Natural seismicity should also be considered in site selection

(74). Fluid injections at European sites with low natural seis-
micity have not produced felt events (16). Acknowledging that
earthquake frequency tends to peak at plate boundaries (75, 76)
further supports the suitability of most sedimentary basins due to
their low natural seismicity. Furthermore, earthquake magnitude
increases with depth (77–83) and therefore, large induced
earthquakes (M > 4) that might jeopardize the caprock sealing
capacity are unlikely to be triggered at the shallow depths at
which CO2 will be injected (recall Fig. 2).
In addition to a proper site characterization, overpressure

management will contribute to avoid felt induced earthquakes

(52, 84), as proposed by Zoback (85) for wastewater disposal.
Numerical simulations have shown that CO2 injection in closed
reservoirs without a proper control of overpressure, i.e., allowing
overpressure to exceed the maximum sustainable injection pres-
sure, has the potential of triggering earthquakes of up to mag-
nitude 4.5 in critically stressed faults (86). However, the mag-
nitude of the simulated induced earthquakes becomes smaller
than 3 when considering more realistic stress fields for sedi-
mentary formations, with shear displacements of up to 6 cm (86,
87). These numerical studies highlight the importance of over-
pressure management for avoiding felt induced seismicity.
Even if a seism of sufficient magnitude occurs, CO2 may not

necessarily leak because fault permeability is reduced and entry
pressure increased in faults across rocks containing clay (37).
Moreover, a self-healing mechanism that prevents CO2 leakage
has been observed in argillaceous limestones (88). We conjecture
that these mechanisms, together with increased buoyancy, may
explain why CO2 natural analogs often leak at shallow depths
(less than 700 m, where CO2 is gaseous), but deep natural CO2
deposits rarely do (89).
Coupled thermo-mechanical effects also deserve attention.

CO2 will generally reach the storage formation at a temperature
lower than that of the rock (90). In fact, injecting liquid (cold)
CO2 and maintaining liquid conditions along the wellbore is
energetically advantageous (and therefore, it is likely to become
a common practice) because it significantly reduces compression
costs (91). Cold injection will cause a cold region around the
injection well, which will induce thermal stress reduction. This
stress reduction may lead to fracture instabilities within the
reservoir (92), where induced microseismicity may be beneficial
as it enhances injectivity. However, cold CO2 injection improves
caprock stability in normal faulting stress regimes because the
caprock tightens as a result of stress redistribution, even in the
presence of stiff caprocks (93). Thus, injection of cold CO2
should further improve stability in tectonically stable regions.
Zoback and Gorelick (1) concluded that large-scale geologic

carbon storage will be extremely expensive and risky. Economic
issues fall beyond our expertise and the scope of this review (but it
seems evident that economic feasibility will depend on the prize of
CO2 emissions). However, we have provided abundant evidence to
state that large-scale CO2 storage is not risky and, thus, will be a
safe option to mitigate anthropogenic climate change.
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