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Pressure dependence of velocity and attenuation and its
relationship to crack closure in crystalline rocks
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Abstract. Measurements of linear strain, ultrasonic velocity, and attenuation (Q‘l) were
made simultaneously as functions of confining pressure on core and outcrop samples from
the Moodus, Connecticut, area. Strain measurements indicate the core samples contain
cracks which formed in part by stress relief during recovery (Meglis et al., 1991). The
outcrop samples have a small crack porosity compared with the cores. Closure of cracks with
increasing confining pressure causes an increase in velocity and a decrease in attenuation.
We present a form for the pressure dependence of the crack density parameter € (the number
of cracks of unit radius per unit volume), which was used to incorporate the influence of
crack closure with pressure into models of wave velocity and attenuation in cracked solids.
The crack density parameter is represented as an exponentially decreasing function of
confining pressure. The pressure dependence of € was determined from the strain
measurements using the non-self-consistent effective modulus approach of O’Connell and
Budiansky (1974), from the velocity data using the solutions of Garbin and Knopoff (1973)
and Hudson (1981), and from the attenuation measurements using the frictional attenuation
model of Walsh (1966). All of the models fit the data reasonably well using an exponentially
decaying € described by one decay constant T. However, some of the data are better fit by a
crack density parameter with two decay constants, reflecting a rapid decrease of € at low
pressure and a slower decrease at higher pressure. There is considerable variation among the
predicted decay constants for a given sample from the different data sets. Several factors
contribute to this variation. For example, the two velocity models predict a different
dependence of velocity on €, which results in a different dependence of € on pressure. For
the Q! data, a}%proximating de/dP by a function with a single decay constant results in lower

7 values for Q-

than for strain or velocity. Finally, a large anisotropy in attenuation

measured in the deepest core samples indicates that scattering is a significant source of wave
energy loss in these samples, and therefore a frictional attenuation mechanism alone cannot

account for all the observed attenuation.

Introduction

The velocities and amplitudes of elastic waves propagating
through rocks are strongly affected by the presence of cracks.
An understanding of the interaction between elastic waves
and cracks follows in part from theoretical models which
account for the changes in velocity and attenuation ©@h
caused by the addition of cracks to initially intact samples
[Walsh, 1966; Garbin and Knopoff, 1973; O’Connell and
Budiansky, 1974; Garbin and Knopoff, 1975a,b; Crampin et
al., 1980; Hudson, 1981; Kikuchi, 1981; Crampin, 1984,
Sayers, 1988]. The characteristics of the crack population are
incorporated into velocity and attenuation models using the
crack density parameter €, which is defined as € = n <>
[Walsh, 1966], where n is the number of open cracks of
radius r per unit volume of rock. The value of the crack
density parameter for a given rock sample can be calculated
directly from linear strain-pressure data [Wang and Simmons,
1978].
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The pressure dependence of velocity and attenuation in dry
samples subjected to confining pressure arises primarily from
the closure of cracks. As pressure is applied the number (n)
of open cracks decreases, causing a corresponding increase in
wave velocities and, depending on the attenuation
mechanism, either an increase or a decrease in wave
amplitudes. Crack closure is represented numerically by a
decreasing €. In this paper we present a form for the pressure
dependence of €, based on analysis of linear strain-pressure
data for a suite of crystalline rock samples subjected to
confining pressures up to 140-150 MPa. We use this function
€(P) to incorporate the effects of crack closure into models for
velocity and attenuation and then use these models to fit
velocity and attenuation data collected simultaneously with
linear strain in our samples. Our primary objective is to
compare the pressure dependence of €(P), computed from
models fit to the three data sets from each sample. We note
that Carlson and Gangi [1985] present a theoretical
derivation and Wepfer and Christensen [1991] present an
empirical relation, both of which describe the pressure
dependence of velocity but do not explicitly incorporate the
crack density parameter.

The amplitudes and velocities of elastic waves in rocks are
affected by such factors as the size, density, orientation
distribution, geometry, and surface roughness of cracks
[Walsh, 1966; Friedman and Bur, 1974; Lockner et al., 1977,
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Winkler and Nur, 1979; Cheng and Toksoz, 1979; Johnston
and Toksoz, 1980; Murphy, 1984; Pyrak-Nolte et al., 1990;
Coyner and Martin, 1990; Sayers et al., 1990]. These
characteristics are, in part, related to the stress history of the
samples [Douglass and Voight, 1969;  Hadley, 1976;
Engelder, 1984; Engelder and Plumb, 1984; Carlson and
Wang, 1986; Meglis et al., 1991]. Core samples used in this
study were initially subjected to mean stress magnitudes
ranging from 5 to 60 MPa. Core recovery induced both rapid
stress relief and a transient high horizontal stress
concentration, causing relatively high crack porosities in these
samples. Outcrop samples, in contrast, were subjected to
lower mean stress levels and were not affected by the stress
concentration associated with drilling. While the outcrop
samples, like the core samples, experienced large amounts of
stress relief, that relief occurred gradually during geologic
unloading over a long time period. As a consequence, the
outcrop samples contain much lower crack porosities than do
the cores. Given their different stress histories, we expect the
core samples to have a significant population of fresh, sharp-
tipped, stress-induced cracks with well-matched faces,
whereas the outcrop samples are more likely to have older,
healed or partially healed cracks. Previous work indicates
that fresh, stress-induced cracks have a low aspect ratio (the
ratio of crack aperture to length) and therefore close at low
confining pressure, whereas higher aspect ratio pores and
healed cracks can persist to high pressures [Batzle et al.,
1980; Hadley, 1976; Carlson and Wang, 1986]. Therefore
variations in the pressure dependence of € should reflect the
behavior of cracks with different aspect ratios in response to
the confining pressure. We discuss the results of our analysis
in the context of the different stress histories of the core and

outcrop samples.

Procedure

Sample Description

Cores were recovered from the Moodus (Connecticut)
borehole at intervals of approximately 150 m to a maximum
depth of 1356 m [Woodward-Clyde Consultants, 1988]
(Table 1). The upper half of the 1356-m borehole is within
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the Merrimack terrane; core samples of the Hebron formation
from this terrane are predominantly medium-grained quartz-
plagioclase-biotite gneisses. The lower half of the borehole
intersects Precambrian age metavolcanics of the Avalon
terrane; core samples from the Waterford formation of this

terrane  are  predominantly medium-grained quartz-
plagioclase-amphibole-biotite ~gneisses and fine-grained
amphibolite. =~ All the samples have a subhorizontal

metamorphic foliation which has influenced the orientation of
recovery-induced microcracks [Meglis et al., 1991]. Three
outcrop samples collected from the Moodus area, two from
the Waterford formation and one from the Hebron formation,
were analyzed for comparison with cores from the equivalent
formation recovered at depth in the Moodus borehole. The
outcrop samples chosen showed minimal superficial
weathering, and test specimens were cut from the centers of
larger blocks so that in general several centimeters of exposed
material were removed.

Sample Preparation

Samples were cut into blocks of approximately 50 mm
sides with one axis [z] parallel to the vertical direction in the
core specimens. The two vertical faces were cut parallel to
N8O°E, the approximate trend of SH (the maximum horizontal
stress) determined in the Moodus well, and to N170°E, the
trend of Sh (the minimum horizontal stress) [Plumb and
Hornby, 1988; Baumgartner and Zoback, 1989]. These
directions are designated [x] (SH) and [y] (Sh). Samples were
ground using a surface grinder and then dried under a vacuum
at ambient temperature for 24 hours.

Three 45° linear strain gage rosettes were attached, along
with four pairs of 1-MHz transducers for time-of-flight
measurements (three pairs of PZT compressional and one pair
of Lithium Niobate shear transducers). The prepared samples
were coated with. Dow Corning RTV 3140 Silicone Rubber
Sealant to exclude the confining medium (hydraulic oil).

Measurements

Strain and velocity measurements were made at pressure
increments of between 5 and 20 MPa, as samples were
pressurized from ambient to approximately 140-150 MPa

Table 1. In Situ Depth of Samples Studied, Velocities Measured in Three Directions at Approximately 0, 50, and
140 MPa Applied Confining Pressure, and Sample Crack Porosity at Ambient Confining Pressure

Core [x] [¥] [z] Crack
Depth, m Porosity,
%
OMPa 50MPa 140MPa OMPa 50MPa 140 MPa OMPa 50MPa 140 MPa
MO:5 surface 4.87 5.81 6.20 4.48 5.57 5.95 3.82 5.16 5.58 0.15
MO0:9 surface 5.23 5.86 6.17 5.23 5.93 6.20 3.59 5.15 5.51 0.13
MO0:13 surface 6.13 6.86 7.11 6.66 7.14 7.37 5.45 6.60 6.88 0.03
Ml 155.6 4.84 5.84 6.20 - - - 3.16 5.26 5.61 0.18
M2 305.4 4.31 5.86* 6.38 - - - 2.79 5.30* 6.31 0.19
M3#2 460.1 4.67 6.18 6.48 4.37 6.05 6.30 2.27 5.30 5.55 0.29
M4i#2 598.1 3.87 5.72 6.14 3.72 5.74 6.14 2.82 5.47 6.05 0.33
M6#2 891.0 3.83 6.01 6.44 3.89 5.90 6.37 2.13 5.71 6.04 0.40
M7 1067.6 4.72 5.84 6.30 - - - 3.94 5.55 5.85 0.11
M8 - - - - - - - 0.61 - - -
M9A 1354.2 3.76 5.02 6.21 - - - 2.03 5.23 5.95 0.53
M9B 1355.6 4.37 5.79 6.63 5.20 6.20 6.83 2.71 5.42 6.11 -

*Measured at 40.7 MPa.
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confining pressure. Strain measurements in the [x], [y], and
[z] directions were analyzed individually, and then the
volumetric strain was determined from the sum of these three
measurements. For the velocity measurements, one source
transducer was excited with a 0.5-us pulse at a rate of 200 Hz,
and the wave was detected by the receiving transducer on the
opposing face. One thousand consecutive traces from the
transducer pair were averaged by a Lecroy 9400 125-MHz
digital oscilloscope, and the averaged waveforms were stored
on a Hewlett Packard PC-305 computer before the next
source transducer was excited. Segments of the stored
waveforms from 5 to 50 ps posttrigger were Fourier
transformed with three-point smoothing to obtain the
amplitude spectrum. Four velocity measurements were made,
though waveforms for only two P wave propagation
directions ([z] and [x]) were analyzed for attenuation. The
“average” sample velocity as a function of pressure was
determined by averaging the velocities measured in the [x],
[y], and [z] directions.

Theoretical Derivations

Strain

At low confining pressure the strain measured in rocks,

here termed e..(P), often increases rapidly with pressure P due

ij :

to the closure of cracks. Following the development of
Siegfried and Simmons [1978], the compressibility of the
cracked material Bij(P) is defined as the pressure derivative of
the strain de./dP, where in our case compressive strains are
positive. The volume compressibility B(P) is, in turn, given
by de;/dP (summation implied).

As ﬁl.,(P) approaches a constant value at higher confining
pressures, it reflects the "intrinsic" compressibility of the
matrix, B’"i. (i.e., the compressibility of the rock with cracks
closed). The deviation of e, (P)at low pressure from the trend
at high pressure is a measure of the strain contributed by the
compression and closure of cracks; the strain due to cracks
which remain open at a given pressure is termed the crack
strain nl..(P). The sum of the crack strains measured in three
mutually perpendicular directions [x], [y], and [z] is the
volumetric crack strain M(P) or the crack porosity for the
sample. The compressibility Bij(P) is related to the crack
strain by

de:: .
Yy _ Bmlj _

dpP
Using the non-self-consistent energy approach of O’Connell
and Budiansky [1974], the volume compressibility of the
cracked solid can also be written

B(P)=B™[1+ Be(P)] €))

where g(P) is the crack density parameter at pressure P and
the constant B is a function of the Poisson's ratio of the
uncracked solid. The form of (2) also describes the
relationship between the linear compressibilities of the rock
and matrix, Bij(P) and Bmij, provided that the specimen is
approximately 1sotropic.

For the Moodus samples, B’”ij was computed for each of
three mutually perpendicular strain curves ([x], [y], and [z]),
and B™ was computed for the volumetric strain curve using
least squares fits to the data between approximately 100 and
140-150 MPa. The crack strains nij(P) were determined from

ey

B;(P)=
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(1). Because nij(P) and n(P) are approximately exponentially
decreasing functions of confining pressure, we have written
them in the form shown here for the volumetric crack strain:

N(P)=ng exp (-P/7) €))

where 1, is the value of n(P) at ambient pressure and 7 is a
decay constant with units of pressure which characterizes the
rate at which n(P) decreases.

By setting (1) and (2) equal in either the linear or volume
form, solving for €, and substituting the derivative of the
crack strain with respect to pressure (computed from (3)), we
obtain the relation shown here for the volume form

e(P) = (-Bo—)exp(—P /1) =¢ggexp(-P/1). @
BB

This relation indicates that the crack density parameter has the
same pressure dependence as the crack strain M(P), namely,
an exponentially decreasing function with decay constant 7.
The values of T and n, were determined from (3) using a
nonlinear least squares fit to the nij(P) and the n(P) data.

In some of the samples it was necessary to fit the data with
a function described by two decay constants, which takes the
form

e(P)= 801 exp(=P/ 1))+ 802 exp(—=P/1y) 5)

This form was used primarily to fit data from the deeper,
more highly cracked cores, and reflects a rapid decrease in €
at low pressure and a slower decay at high pressure.

Velocity

We use two approaches to relate the P wave velocity to the
crack density parameter, both of which involve expressions
correct to first order in € which relate the velocity to the
effective elastic moduli of a solid containing dry, penny-
shaped cracks [Garbin and Knopoff, 1973, 1975a,b; Hudson,
1981].  Neither model assumes any particular pressure
dependence for the crack density parameter. We have
substituted our (4) and, in certain cases (5), for € in these
models. We show the derivations using (4).

First, Garbin and Knopoff's [1973] relation takes the form

V,(P)=V"™p[1+ Cegexp(-P/ )] V2 (©6)

where V_ is the P wave velocity of the material at confining
pressure P, V™ is the “intrinsic” P wave velocity of the intact
rock matrix, and C. is a function of the elastic properties of
the uncracked material. We note that this form is similar to
the non-self-consistent relation derived by O’Connell and
Budiansky [1974]. For the second approach we have
substituted (4) for € in Hudson's [1981] derivation and arrive
at an equation of the form

V,(P)=V"pl1- Cyegexp(-P/1)]"2. )

Crampin [1984] notes that the equations derived by Hudson
[1981] and Garbin and Knopoff [1973] are equivalent for
small values of €. Equations (6) and (7) were fit to the
velocities measured in the [x], [y], and [z] directions and to
the average sample velocities using a routine which iteratively
adjusts the parameters V"’p, (Cigy) or (Cyey), and T to
minimize the least squares deviation of the function from the
data.
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Attenuation

Attenuation calculations. To calculate attenuation (Q'l)
from the Moodus data, the following procedure from Toksoz
et al. [1979] was employed using the amplitude of a silica
standard as a reference. The ratio of wave amplitudes in the
rock and silica samples is given by

Arock :( K
Asilica K

where A is the amplitude, K is an unknown constant which
includes the unattenuated (initial) wave amplitude, and the
loss due to transducer coupling, elcctromcs and other factors,
0! is the attenuation of the rock, 0! , is the attenuation of the
silica and is assumed equal to zero, and { = (nfd/V),), where d
is the sample length, f is the frequency, and V, is the
measured compressional wave velocity in either the silica or
the rock. Although sample lengths were not identical in these
specimens, we are primarily interested in the pressure
dependence of 0’!. Edge effects or wave spreading ma 1y
introduce some error into the absolute value of Q7.
However, this error should not vary strongly with the
confining pressure.

If the initial wave amplitudes in the silica and the rock are
equal, and variations caused by electronics and transducer
coupling affect the measurements equally, then the term
K, e smm) is approx1mately equal to one. Therefore the
attenuation in the rock Q! at any pressure P is given by the

relation
Amck (P ) ] (9)
Asilica (P)

An alternate method of calculating 07! was employed for

" Jexp(CsilicaQs_l - QrockQ_l) (8)

silica

0 NP = ~Lroek (P)ln(

comparison with the values determined by 9). If the
attenuation is frequency-independent and 0! of the silica
standard is approximately equal to zero, then 0! can be

determined from the slope of the natural log of the spectral
ratios over a given frequency range,

aalety

where d is the sample length and V), is the P wave velocity in

07'= (10)
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the cracked solid [Toksoz et al., 1979]. We have used the
slolpe over a frequency range from 0.6 to 1.6 MHz to calculate
Q™ at four confining pressures for two core samples (Table
2). Values calculated from the slope of the spectral ratios
(equation (10)) for sample M6#2 and M3#2 are comparable to
those calculated from the 1-MHz peak amplitude (equation
).

Pressure dependence of fnctlonal sliding attenuation.
The attenuation in a rock (Q°!) can be represented as the sum
of the attenuation caused by cracks ! ) (which includes
both frictional and scattering attenuatron) and the intrinsic
attenuation (Q ) caused by other mechanisms such as
scattering at gram boundaries:

ol'=0+g7L (11)

For a purely frictional sliding attenuation mechanism, Q° lc =
0! _; this term depends on the number and average length of
the cracks which close over a given small pressure interval
[Walsh, 1966]. The crack density parameter € is a measure of
both the number and size of open cracks in the specimen.
The derivative of the crack density parameter is then related to
the number of cracks and the average size of the cracks which
close (i.e., which come into incipient contact) per unit
pressure increase. We assume that confining pressure causes
closure of cracks parallel to the short axis (i.e., the crack
aperture diminishes with no change in crack length). For a
rock containing a spectrum of aspect ratios, attenuation by
friction should therefore be proportional to the derivative of
the crack density parameter evaluated at pressure P. We use
an equation similar to equation (2) of Johnston et al. [1979]
which came from Walsh [1966]:

E de(P) (1-V)

E" dP (1-2v?) r @

ch_l(P) =

where V is the Poisson's ratio of the cracked solid, E is the
Young's modulus of the rock at pressure P, E™ is the
“intrinsic” Young’s modulus of the intact (uncracked) rock
matrix, and F is an unspecified function which represents the
dependence of Q on the coefficient of sliding friction
along the crack face the Poisson’s ratio of the uncracked
solid, and the orientation of the cracks. By inspection of (12),

Table 2. Comparison of Q! Values Calculated From the Slope of the
Spectral Ratios With Those Calculated From the 1-MHz Peak

Amplitude for Two Specimens

Confining Pressure, MPa
M3#2 [z] Direction 20 40 100 140
Slope method 0.043 0.039 0.032 0.028
1-MHz peak method 0.031 0.023 0.022 0.021

Confining Pressure, MPa
M6#2 [x] Direction 25 35 100 140
Slope method 0.083 0.068 0.040 0.028
1-MHz peak method 0.090 0.069 0.035 0.033
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it is clear that the attenuation will have a pressure dependence
related to that of the crack density parameter.

We make the assumption, as did Johnston et al. [1979],
that both vV and F vary slowly with pressure and that the ratio
(E/E ™) can be approximated by (VP/V ™ )2 Using the form
of € given in (4), equation (12) is rewritten

0 "' (P) =TV (P)exp(-P /) (13)

where T is constant with pressure. Data from selected
samples were also fit using two decay constants (equation (5))
to describe the pressure dependence of €.

Note that (13) is valid only for an exponentially decaying
crack density parameter. While equation (8) of Johnston et
al. [1979] has the same form as our (12), it was not clear in
their formulation what assumptions were made regarding the
pressure dependence of s, and therefore we did not use their
derivation. Note that 0! .rhas a pressure dependence through
both the velocity and the crack density parameter. We used
the velocities and amplitudes measured in the rock and silica,
the sample length, and the frequency f=1MHz to compute
o (P) using (9). Given Q Vp and assuming that Q F
o lc and that Q"' is constant with pressure, we substituted
(13)into (11). We then fit this function to the data using a
routine which iteratively adjusts the parameters ol T, and 1
to minimize the least squares deviation of the functlon from
the data.

Scattering model for attenuation. Scattering occurs if
the radius of a crack is large compared to the wavelength of
the propagating wave and is greatest for a wave propagating
normal to the crack plane. szucht [1981] gives an
approximation for the attenuation, Q , due to scattering by
penny-shaped cracks,

2 ym
-1 ~ rnV p 14
Ocs —r (14)
where n is the number of cracks of radius r per unit volume
and V”‘p is the compressional wave velocity of the intact rock
matrix at frequency f.

We have assumed that the attenuation due to scattering in
the deep, highly cracked cores (from 891 0 and 1355.6 m
depth) is equal to the difference between 0! values measured
in the [x] and [z] directions (i.e., we assume that a small
fraction of the attenuation is caused by frictional sliding).
Using the P wave velocity measured in the [z] direction at the
maximum confining pressure as V™ ., we calculated the
number of cracks in the sample for thre? values of r (2.5 mm,
5 mm, and 10 mm) using Q measurements taken at
approximately 20-MPa confinement.

Experimental Results

Examples of the crack strain, velocity, and attenuation data
for the vertical [z] direction are shown in Figures 1, 2, and 3,
respectively. Measurements are shown for three core samples
and the corresponding surface sample from the equivalent

Figure 1. Examples of crack strain () as a function of
confining pressure for selected core (solid symbol) and
outcrop samples (open symbol). Curves were fit to the data
using equation (3); the corresponding value of T is shown. (a)
Waterford Amphibolite, (b) Waterford Gneiss, and (c) Hebron
Gneiss.

Crack strain (ue)

Crack strain (ue)

Crack strain (ue)

4000

3500

3000

2500

2000

1500

I - Waterford Amphibolite

R

M9B#2 (1355.6 m)
=182

MO:13 (surface)

0 50 100 150

(a) Confining Pressure (MPa)
4000
Waterford Gneiss
3500
3000
2500 —
2000 M6#2 (891.0 m)
1=13.2
1500 -
MO:5 (surface)
1000 1=217

3500

3000

2500

2000

1500

1000

500

©

0 50 100 150
Confining Pressure (MPa)

Hebron Gneiss

- M3#2 (460.1 m)

/ T=122

MO:9 (surface)
t=16.6

0 50 100 150
Confining Pressure (MPa)



17,528

MEGLIS ET AL.: PRESSURE DEPENDENCE OF STRAIN, VELOCITY, AND Q!

7.00

6.00

5.00

4.00

3.00

Velocity (km/s)

2.00 +

1.00

MO0:13 (surface)
1=220

MOB#2 (1355.6)
T=14.1

Waterford Amphibolite

0.00

(@
7.00

T T
50 100
Confining Pressure (MPa)

150

Velocity (km/s)

3.00

2.00

1.00

\ M6#2 (891.0 m)

1=93

MO:5 (surface)
1=232

Waterford Gneiss

0.00

0

(b)

T T
50 100
Confining Pressure (MPa)

150

7.00

6.00 4

Velocity (km/s)

1.00

MO:9 (surface)
t1=16.7

_— M3#2 (4601 m)

1=87

Hebron Gneiss

0.00

©

T T
50 100
Confining Pressure (MPa)

150

formation. Under ambient pressure conditions, the deeper
cores (from 891.0 m and 1355.6 m) have larger crack strains
(n) than do the shallower core (from 460.1 m) and the surface
samples (Figure 1). As increasing confining pressure causes
crack closure, crack strain decreases approximately
exponentially in all samples. In general, the largest crack
strains are measured in the vertical direction [z], parallel to
the core axis, indicating a subhorizontal preferred orientation
of cracks [Meglis et al., 1991].

P wave velocities are lowest in all samples under ambient
pressure conditions (Table 1); the core samples have lower
ambient velocities than the corresponding outcrop samples
(Figure 2). With increasing confining pressure, velocities
increase to values between 5.50 and 7.00 km/s. The velocity
anisotropy between the horizontal and vertical directions is
highest at ambient pressure; the deeper samples generally
have a larger velocity anisotropy at low pressures.

0! decreases with increasing confining pressure in all
samples (Figure 3). 0! measured at ambient pressure is
significantly higher in the two deeper cores than in the
corresponding outcrop samples. In contrast, Q7! in the
shallowest core and surface sample are approximately equal,
even though strain and velocity measurements indicate that
core sample M3#2 is more highly cracked. However, Q‘l isa
measure of the fractional energy loss per wavelength, and
because both the velocity and amplitude are lower in the core
sample than in the outcrop sample, 0! is not significantly
different. In the deeper cores, higher confining pressures are
needed in order to reach intrinsic (Q'li) values than in the
corresponding surface samples.

Because the wave amplitude at 1 MHz is extremely low in
the two deepest core samples at low pressure, approximately
20 MPa must be applied to these samples before a peak at 1
MHz can be detected. We compare 0! values measured at
approximately 20 MPa with those measured at the maximum
confining pressure (approximately 140-150 MPa) (Figure 4).
At 20 MPa, Q'l measured in the [x] direction increases
slightly with sample depth (from 0.03 in the surface samples
to 0.07 in the deepest core), whereas Q'l measured in the [z]
direction increases strongly with sample depth (from 0.03 in
the surface samples to 0.22 in the deepest core). The deepest
core samples show a pronounced anisotropy between the [z]
and [x] directions. At the maximum pressure (140-150 MPa)
confining pressure, Q'l decreases in both the [z] and [x]
directions to values between 0.03 and 0.05, and the difference
between Q'l measurements in the [x] and [z] directions
diminishes significantly. Measurements of 0! in the shallow
samples are consistent with published values for granites at
somewhat lower frequencies (0.067 for 0.15 MHz pulse
[Blair, 1990] and 0.049 for 0.3-0.6 MHz pulse [Tac and
King, 1990]).

Model Results

Examples of model curves fit to the velocity, strain, and
0! measurements are overlain on the data shown in Figures

Figure 2. Examples of compressional wave velocity as a
function of confining pressure for selected core (solid
symbol) and outcrop samples (open symbol). Curves were fit
to the data using equation (6); the corresponding value of T is
shown. (a) Waterford Amphibolite, (b) Waterford Gneiss,
and (c) Hebron Gneiss.
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Figure 4. Q! measured in Moodus samples at 20 MPa and
140 MPa confining pressure for P waves propagating in the
[x] (horizontal, N8O°E) and [z] (vertical) directions.

1, 2, and 3. An exponential fit (equation (4)) is a reasonable
approximation of the pressure dependence of the crack
density parameter for all three measurements. However,
curves fit to the velocity data using the model of Garbin and
Knopoff [1973] (equation (6)) tend to overestimate the
velocity slightly between approximately 30 and 70 MPa and
underestimate it at high pressure (Figure 2). This discrepancy
is more pronounced in the deeper, more highly cracked cores
and led us to fit those data using a crack density parameter
which is characterized by two decay constants (equation (5)).
This form was necessary to reproduce the effects of both the
rapid closure of cracks at low pressures and the slower
closure at higher pressure.

Three model curves fit to the velocity data for sample
M6#2 are plotted with the data for both the [x] and [z]
directions in Figure 5. Even with the relatively large crack
porosities in these samples, the models of Hudson [1981] and
Garbin and Knopoff [1973] fit the data reasonably well in the
[x] direction. However, in the [z] direction, equation (6)
overestimates the velocity between 30 and 70 MPa and
underestimates it at high pressure; using a crack density
parameter with two decay constants provides a better fit to the
data.

Values of T derived from all the measurements are shown
in Figures 6, 7, and 8. In general, the values of t derived
from the volumetric strain data are similar to those from the
average velocity measurements fit using Garbin and
Knopoff's [1973] velocity model (equation (6)) (Figure 6).
However, for the measurements in the [x] and [z] directions

Figure 3. Examples of attenuation (Q'Y) as a function of
confining pressure for selected core (solid symbol) and
outcrop samples (open symbol). Curves were fit to the data
assuming only a frictional sliding attenuation mechanism; the
corresponding value of T is shown. (a) Waterford
Amphibolite, (b) Waterford Gneiss, and (c) Hebron Gneiss.
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Figure 5. Comparison of curves fit to velocity data from core
sample M6#2 (Waterford Gneiss from 891.0 m depth) using
theory of Garbin and Knopoff [1973] (equation (6)) and
Hudson [1981] (equation (7)). (a) Velocity data for the [x]
direction (N80°E). (b) Velocity data for the [z] direction
(vertical).

the values of T derived from strain, velocity, and 0! for a
given sample show considerable variability (Figures 7 and 8).
Values of t derived from the Q'l data are lower than those
from strain or the two velocity models, with the exception of
data from the deep cores in the [z] direction. Values of t for
Garbin and Knopoff’s velocity model are generally similar to
those derived from the strain data in both the [x] and [z]
directions. Values of T derived from Hudson’s velocity
model are higher than those derived from Garbin and
Knopoff’s model. In a given sample, T values derived from
data for the [z] direction tend to be slightly lower than for data
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in the [x] direction. Whereas T values derived from strain and
velocity data tend to be higher in the surface samples than in
the cores, the opposite is true for values derived from Q'1
data. There is no clear trend in T with depth.

Results of the scattering model for attenuation are
presented in Table 3. The model predicts large numbers of
2.5-mm cracks. However, the values for 10-mm-radius cracks
are reasonable, since relatively long cracks (>10 mm) are
visible in specimens of the deepest cores.

Discussion

With the closure of cracks under hydrostatic confining
pressure, P wave velocity increases and attenuation decreases
in these samples. An exponentially decreasing crack density
parameter €, used in the velocity and attenuation models,
provides a reasonable fit to the data. A form which employs
two decay constants provides a somewhat better fit; the
difference is more substantial in the deeper, highly cracked
samples. The necessity for using two T suggests that in these
samples, a population of low aspect ratio cracks (which close
quickly at low pressure) is superimposed on a population
which closes more slowly with pressure.

There is some variation among the T values computed from
the different data sets and models. For the velocity data,
values of T derived from Hudson’s [1981] model (equation
(7)) are larger than those from Garbin and Knopoff’s [1973]
model (equation (6)). The difference between the fits of these
two models can be understood by considering the variations
in velocity as a function of € for equations (6) and (7),
assuming normal incidence to a set of aligned cracks. A
relatively small decrease in € accounts for a larger velocity
change in Hudson’s formulation than in Garbin and
Knopoff’s. Therefore a larger decay constant derived from
Hudson’s formulation (which indicates a slower decrease in €
with pressure) is consistent with the trend of the velocity data.

The surface samples and shallow cores have undergone
little stress relief during recovery and therefore have low
crack porosities (Table 1). These samples generally have
slightly larger values of T for strain and velocity than the
deeper core samples indicating that although the porosities are
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Figure 6. Plot of T values using a single-T fit to volumetric
crack strain data and average velocity.
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Figure 7. Plot of T values using a single-t fit to crack strain
and O ! data, plotted at in situ depth of samples. (a) T values
computed for measurements in the [z] direction (vertical). (b)
T values computed for measurements in the [x] direction
(NSO°E).

relatively low, the cracks persist to higher confining
pressures. This behavior suggests the cracks have relatively
high aspect ratios, which would be expected of partially
healed cracks and pores rather than fresh, stress-induced
cracks.

The deeper cores have undergone greater stress relief than
the shallower samples and have been subjected to a larger
stress concentration during drilling; therefore they have
higher crack porosities. ~ Furthermore, the foliation has
contributed to a strong subhorizontal preferred orientation of
the crack planes (normal to the [z] direction). In general, the
strain and velocity data from the deeper core samples yield
somewhat lower values of T than data from the equivalent
surface samples, consistent with the presence in the cores of
low aspect ratio, recovery-induced cracks which close rapidly
with confining pressure. In a given core sample, the vertical
measurements [z] have slightly lower values of T than the
horizontal measurements [x], consistent with the preferred
orientation of these cracks normal to the [z] direction.

The low T values derived from the Q! data, compared with
those from the strain and velocity data, can be understood by
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Figure 8. Plot of 1 values using a single 1 fit to velocity data,
plotted at in situ depth of samples. (a) T values for velocity
measured in the [z] direction (vertical) using equation (6)
[Garbin and Knopoff, 1973] and equation (7) [Hudson,
1981]. (b) T values for velocity measured in the [x] direction
(N80°E) using equation (6) [Garbin and Knopoff, 1973] and
equation (7) [Hudson, 1981].

comparing the pressure derivatives of equations (4) and (5),
since 0! behaves as de/dP. If € is described by a single
decay constant T, its derivative will have the same decay
constant. However, if the data are better fit by an € with two
decay constants, the smaller T term will dominate the pressure
derivative. ~ Therefore approximating de(t,,7,)/dP with
de(t)/dP yields a lower T value for the Q'l data than does

Table 3. Numbers of Cracks at Approximately 20 MPa
Confining Pressure, Predicted by Scattering Model
(Equation (14)) for Three Values of the Crack Radius,
Computed for P Waves Propagating in the [z] Direction in
Samples M6#2 and M9B#2

Sample 2.5 mm 5 mm 10 mm
M6#2 250 63 16
MO9B#2 328 82 20
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approximating £(t,,T,) with &(7) for the strain and velocity
data.

Furthermore, the large anisotropy in crack strains and
velocities between the vertical [z] and horizontal [x]
directions in the deeper samples correlates with a very large
anisotropy in 0! at low confining pressure (Figure 4). The
anisotropy in Q! cannot be explained using Walsh's [1966]
frictional sliding attenuation model, which predicts that for
crack planes aligned approximately normal to the [z]
direction, Q! . is not significantly larger than Q'lx. Therefore
a purely frictional sliding model of attenuation is not
appropriate for 0! in the highly cracked samples.

The model of Kzikuchi [1981] yields reasonable estimates
of the number of large cracks which could cause the observed
attenuation. We conclude that for order of magnitude
estimates, Q! at low pressures in the deeper cores is primarily
the result of scattering. Although the crack aperture predicted
for a crack of radius 10 mm which closes at 100 MPa [Walsh,
1966] is relatively large (15 pm) compared to “typical” rocks
[Hadley, 1976], the cracks in the deeper cores are large
enough to be visible in hand specimens. We expect therefore
that scattering may contribute to attenuation in the [z]
direction even at high pressure in these samples.

Conclusions

Cracks in core and outcrop samples of crystalline rocks
from the Moodus, Connecticut, area are interpreted as
forming partly in response to the stress conditions imposed
during sample recovery [Meglis et al., 1991]. Crack porosity
in the core samples is generally higher than that in the surface
samples, reflecting the increasing amount of recovery-induced
damage in the cores. Furthermore, a subhorizontal
metamorphic foliation has contributed to a preferred
alignment of crack planes normal to the core axis.

The closure of cracks under hydrostatic confining pressure,
measured directly by linear strain, correlates with increasing
wave velocities and amplitudes, which reach relatively
constant values at high pressure. Anisotropy in velocity and
attenuation diminishes with confining pressure. In order to
quantify the correlation between crack closure and changes in
wave velocities and amplitudes in the Moodus samples, we
have employed theoretical models of wave propagation which
incorporate the influence of cracks through the crack density
parameter €. The crack density parameter is approximated by
an exponentially decreasing function of pressure, which has a
decay constant T. Using this form of € in the attenuation and
velocity models, we find good agreement between the
measured and the predicted pressure dependence of velocity
and attenuation models. However, a large anisotropy in olat
low confining pressure in the deepest, most highly cracked
cores indicates that scattering is an important attenuation
mechanism. Using a model of scattering by penny-shaped
cracks we find reasonable order-of-magnitude estimates for
the number of cracks needed to account for attenuation at low
pressure in these cores.
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